当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 冷轧带钢板形屈曲变形失稳限的有限元分析
第卷第期中南大学学报自然科学版386()Vol.38No.62007年12月J.Cent.SouthUniv.(ScienceandTechnology)Dec.2007冷轧带钢板形屈曲变形失稳限的有限元分析王澜1,曹建国1,贾生晖2,曾彤2(1.北京科技大学机械工程学院,北京,100083;2.武汉钢铁(集团)公司,湖北武汉,430083)摘要:采用ANSYS有限元仿真分析方法研究冷轧宽带钢板形屈曲失稳特性。利用ANSYS的几何非线性求解模块,建立宽薄带钢二维有限元模型,分析不同形式载荷、厚宽比和张应变下的屈曲失稳过程,计算板形屈曲变形失稳限。分析结果表明:边中复合浪的临界失稳载荷最大,中浪的较大,边浪的最小;边中复合浪的屈曲半波长为板宽的50%~60%,中浪与单边浪为80%左右,对称双边浪约为70%;在同样载荷下,随着厚宽比或张应变的增加,临界失稳限呈增长趋势,并且复杂浪形的临界失稳限增长速度明显大于简单浪形的增长速度。关键词:冷连轧机;带钢;屈曲;有限元分析中图分类号:PG335.11文献标识码:A文章编号:1672-7207(2007)06−1157−05FiniteelementanalysisofshapebucklingloadforcoldrolledstripsWANGLan1,CAOJian-guo1,JIASheng-hui2,ZENGTong2(1.SchoolofMechanicalEngineering,UniversityofScienceandTechnologyBeijing,Beijing100083,China;2.WuhanIronandSteelCompany,Wuhan430083,China)Abstract:ThebehaviorofthecoldrolledstripbucklingwasstudiedusingtheANSYSfiniteelementmethod.Basedonthegeometricalnon-linearsolutionmoduleoftheANSYS,thetwo-dimensionalfiniteelementmodelwasdevelopedtoanalyzetheprocessofbucklingwiththedifferentkindsofloads,thedifferentratiosofstripwidthtogaugeandtensilestrain.Thenthebucklingloadwasfiguredout.Theresultsshowthatthebiggestbucklingloadappearsinthecenterbucklewithedgewave,thesmallestappearsinthesidelongedge,andthelongcenterranksthemiddle.Thehalfbucklingwavelengthofthecenterbucklewithedgewaveis50%−60%ofwidth,thelongcenterandthesingle-sidelongedgeisround80%,thesymmetricaldual-sidelongedgeisabout70%.Withthesamekindofloads,thebucklingloadkeepsgrowingwhiletheratioofstripwidthtogaugeorthetensilestrainincreases,andthecomplexgrowsobviouslyfasterthanthesimpleone.Keywords:tandemcoldrollingmill;strip;buckling;finiteelementanalysis确定冷轧带钢板形屈曲失稳限,即轧后带材产生板形缺陷的临界条件,是建立冷轧带钢板形控制目标模型的理论基础。在冷轧薄板轧制过程中,在张力作用下,带钢内部原存在的纵向纤维不均匀延伸导致带材上有的部分受拉应力作用,有的部分受压应力作用,当压缩部分的压应力超过一定临界值时,该部分的带材会出现受压失稳,带材产生某种形式的板形屈曲变形,带材出现翘曲浪形。带钢产生板形屈曲的根本原收稿日期:2007−03−10;修回日期:2007−05−08基金项目:国家自然科学基金重点资助项目(59835170);北京科技大学科技发展专项基金资助项目(20050311890)作者简介:王澜(1978−),男,浙江长兴人,工程师,从事板形控制、板带轧制技术及自动化研究通信作者:曹建国,男,博士,副教授;电话:010-62332835;E-mail:geocao@me.ustb.edu.cn中南大学学报(自然科学版)第38卷1158因是带钢各条纵向纤维长度不相等(沿宽向的不均匀轧制或延伸所致),且达到屈曲临界条件。运用薄板弹性小位移理论,根据能量原理和变分法可以求解各种板形应力形式下的屈曲发生界限[1−10],但不能得到关于屈曲临界条件的显式表达式,必须通过数值计算才能求得各种工况下的屈曲临界应力[11]。1700mm冷连轧机是我国引进的第1套现代化冷连轧机,2004年3月完成了以“酸轧联机”为主要内容的技术改造,目前年生产50万t以上的新规格电工钢板,该轧机仍采用改造前板形控制目标系统,不能反映生产实际的变化[12−16]。因此,本文作者采用大型通用有限元分析软件ANSYS建立薄板有限元模型,施加相应的边界条件和载荷,计算了轧后带材的屈曲失稳限,这对于建立大量生产电工板的板形控制目标具有实用价值。1板形屈曲变形的有限元模型1.1建模由于这里研究的对象是宽薄带钢,其厚度仅为0.5mm,与宽度、长度相比很小,因此,利用ANSYS提供的二维壳单元shell63来建模,厚度作为实参数直接输入[17]。模型宽度等于带材原来的宽度,长度等于带材发生屈曲后的半波长L。单元划分时保证每个单元面积不大于20mm×20mm。薄板模型具体参数为:宽度b=1300mm;计算参数为:弹性模量E=2.1×1011N/m2,泊松比μ=0.28。1.2确定边界条件与载荷采用第1类车比雪夫多项式系表示的板形应力作为计算中的外载,具体表达式如下:T1(x)=x;T2(x)=2x2−1;T4(x)=8x4−8x2−1。冷轧带钢板形应力分布模式如图1所示。带材发生屈曲变形的过程中,在计算中假定外载荷保持不变,即忽略失稳过程中的应力松弛现象。对不同的载荷形式采用不同的约束方式分别进行约束。对同一种载荷形式也要尝试不同的约束条件,进行多次试算,以最符合实际情况的约束作为最终可采用的约束。图2所示为中浪形式模型载荷图。2计算与分析由于冷轧薄板结构的特殊性,当∆σcrσs时,已经发生失稳变形,因此,不必考虑材料的非线性特1—1/4浪;2—边中复合浪;3—左侧边浪;4—右侧边浪;5—中浪;6—双侧边浪图1冷轧带钢板形应力分布模式Fig.1Shapeofcoldrolledstripstrain图2中浪形式载荷图Fig.2Loadsoflongcenter点[13−14]。计算中的主要参数有轧件宽度、厚度及截取的半波长L。根据实践经验,半波长L一般在宽度的0.25~1.25之间变动,因此,在这个范围内分别截取不同的长度进行求解,以找到最小临界失稳限及半波长。ANSYS提供的分析结构屈曲失稳的技术是通过逐渐增加载荷的非线性静力分析方法来获得结构发生失稳的临界载荷。在计算中,如果模型的原始状态为平坦的,并且所加载荷也在平面内,将不会产生屈曲变形,也不会得到屈曲结果[18−20]。所以,在计算前,通过对平坦的板带模型加入适当静态初始位移,使模型产生预变形,从而达到屈曲变形的目的。利用非线性计算中的BUCKLING模块求解出薄板模型在不带张力情况下的屈曲失稳限。中浪形式模型屈曲变形如图3所示。2.1临界失稳限的计算与分析0.5mm×1300mm规格冷轧薄板的5种浪形的临界失稳限计算结果如表1和图4所示。6期王澜,等:冷轧带钢板形屈曲变形失稳限的有限元分析第1159表1冷轧带钢不同浪形的临界失稳限计算结果Table1Bucklingloadresultsofdifferentstripwaves单边浪形式载荷中浪形式载荷对称双边浪形式载荷边中复合浪载荷1/4对称浪形式载荷截取板长L/m临界失稳限截取板长L/m临界失稳限截取板长L/m临界失稳限截取板长L/m临界失稳限截取板长L/m临界失稳限0.800.646950.800.881260.600.592740.302.052300.401.512600.900.634860.900.839760.640.590970.401.818000.461.500501.000.626041.000.814430.700.589860.461.761800.501.497401.100.621201.100.801680.720.589830.501.729700.521.497001.160.620101.160.798900.760.590190.521.733800.561.498101.200.620001.200.798510.800.590990.561.746900.601.500701.260.620661.260.800520.900.594290.601.802100.701.508901.300.621521.300.804081.000.598380.701.899100.801.514900.801.975900.901.52100图3中浪形式屈曲变形图Fig.3Bucklingoflongcenter1—单边浪形式载荷;2—中浪形式载荷;3—对称双边浪形式载荷;4—边中复合浪载荷;5—1/4对称浪形式载荷图4冷轧带钢5种典型浪形的临界失稳限Fig.4Bucklingloadoffivetypicalwaves2.1.1不同形式载荷对临界失稳限的影响从计算出的各种屈曲失稳限可以看出(见图4),不同的浪形有不同的临界失稳限,复合浪的临界失稳限相对较大,中浪的临界失稳限次之,边浪的临界失稳限较小。即在同样大小的残余内应力下,边浪最易生成,而复合浪最不易生成。2.1.2不同形式载荷对屈曲半波长的影响单边浪与中浪的屈曲半波长相对较大,为板宽的80%左右,对称双边浪屈曲半波长约为板宽的70%,复合浪的屈曲半波长最小,为板宽的50%~60%。这与复合浪多为短波,中、边浪多为长波的实际情况也相吻合。2.2张应力对临界失稳限的影响中浪和对称双边浪为例,薄板模型在带张力情况下的屈曲失稳限,计算结果如图5所示。从图5可见,在对中浪、对称双边浪施加张应变后,浪形的临界失稳限明显增大,并且临界失稳限的增加与张应变的增加呈线性关系。因此,在线轧制时,施加合理的张应力,提高临界失稳限,可以有效防止带材在线屈曲。2.3厚宽比对临界失稳限的影响薄板5种浪形在不同厚宽比(比例数量级为10−3)的情况下计算结果的屈曲失稳限如图6所示。中南大学学报(自然科学版)第38卷11601—中浪;2—对称双边浪图5薄板临界失稳限与张应变的关系Fig.5Relationshipbetweenbucklingloadandtensilestrainofthinplate1—边中复合浪;2—中浪;3—对称双边浪;4—1/4浪;5—单边浪图6薄板临界失稳限与厚宽比的关系Fig.6Relationshipbetweenbucklingloadandratioofwidthtogaugeofthinplate从图6可以看出,随着厚宽比的增大,临界失稳限呈显著增加趋势,并且在增加的厚宽比相同时,复合浪形比中浪、边浪等简单浪形的临界失稳限增加的速度更快,其曲线的斜率明显大于其他2种浪形斜率。因此,厚度越大的薄板越不易发生屈曲,厚宽比是影响薄板临界失稳限的重要因素。3结语a.冷轧带钢临界失稳除了与材料性质E和μ相关外,不同的浪形对应不同的临界失稳限及屈曲半
本文标题:冷轧带钢板形屈曲变形失稳限的有限元分析
链接地址:https://www.777doc.com/doc-1429607 .html