第1页(共23页)2019年上海市普陀区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.(4分)已知二次函数y=(a﹣1)x2+3的图象有最高点,那么a的取值范围是()A.a>0B.a<0C.a>1D.a<12.(4分)下列二次函数中,如果图象能与y轴交于点A(0,1),那么这个函数是()A.y=3x2B.y=3x2+1C.y=3(x+1)2D.y=3x2﹣x3.(4分)如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使△ADE与△ABC相似,那么这个条件是()A.∠AED=∠BB.∠ADE=∠CC.=D.=4.(4分)已知、、都是非零向量,如果=2,=﹣2,那么下列说法中,错误的是()A.∥B.||=||C.=0D.与方向相反5.(4分)已知⊙O1和⊙O2,其中⊙O1为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于()A.1B.4C.5D.86.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE经过重心G,在下列四个说法中①=;②=;③=;④=,正确的个数是()第2页(共23页)A.1个B.2个C.3个D.4个二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果=,那么的值是.8.(4分)化简:3()﹣2()=.9.(4分)如果抛物线y=2x2+x+m﹣1经过原点,那么m的值等于.10.(4分)将抛物线y=(x+3)2﹣4先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是.11.(4分)已知抛物线y=2x2+bx﹣1的对称轴是直线x=1,那么b的值等于.12.(4分)已知△ABC三边的比为2:3:4,与它相似的△A′B′C′最小边的长等于12,那么△A′B′C′最大边的长等于.13.(4分)在Rt△ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是.14.(4分)正八边形的中心角为度.15.(4分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,tan∠ABD=,BC=5,那么DC的长等于.16.(4分)如图,AB∥CD,AD、BC相交于点E,过E作EF∥CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于.第3页(共23页)17.(4分)已知二次函数y=ax2+c(a>0)的图象上有纵坐标分别为y1、y2的两点A、B,如果点A、B到对称轴的距离分别等于2、3,那么y1y2(填“<”、“=”或“>”)18.(4分)如图,△ABC中,AB=AC=8,cosB=,点D在边BC上,将△ABD沿直线AD翻折得到△AED,点B的对应点为点E,AE与边BC相交于点F,如果BD=2,那么EF=.三、解答题:(本大题共7题,满分78分)19.(10分)计算:4sin45°+cos230°﹣.20.(10分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在边BC上,AE与BD相交于点G,AG:GE=3:1.(1)求EC:BC的值;(2)设=,=,那么=,=(用向量、表示)21.(10分)如图,⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,O2A的延长线交⊙O1于点D,点E为AD的中点,AE=AC,联结OE.(1)求证:O1E=O1C;(2)如果O1O2=10,O1E=6,求⊙O2的半径长.第4页(共23页)22.(10分)如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)23.(12分)已知:如图,△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,AE2=AF•AB,∠DAF=∠EAC.(1)求证:△ADE∽△ACB;(2)求证:=.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为点D.(1)求抛物线的表达式及点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;第5页(共23页)(3)如果点F是抛物线上的一点.且∠FBD=135°,求点F的坐标.25.(14分)如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求AQ:OQ的值.第6页(共23页)2019年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.(4分)已知二次函数y=(a﹣1)x2+3的图象有最高点,那么a的取值范围是()A.a>0B.a<0C.a>1D.a<1【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由题意可知:a﹣1<0,∴a<1,故选:D.2.(4分)下列二次函数中,如果图象能与y轴交于点A(0,1),那么这个函数是()A.y=3x2B.y=3x2+1C.y=3(x+1)2D.y=3x2﹣x【分析】根据y轴上点的坐标特征,分别计算出x=0时四个函数对应的函数值,然后根据函数值是否为1来判断图象能否与y轴交于点A(0,1).【解答】解:当x=0时,y=3x2=0;当x=0时,y=3x2+1=1;当x=0时,y=3(x+1)2=9;当x=0时,y=3x2﹣x=0,所以抛物线y=3x2+1与y轴交于点(0,1).故选:B.3.(4分)如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使△ADE与△ABC相似,那么这个条件是()A.∠AED=∠BB.∠ADE=∠CC.=D.=【分析】由已知及三角形相似的判定方法,对每个选项分别分析、判断解答出即可.【解答】解:由题意得,∠A=∠A,A、当∠ADE=∠B时,△ADE∽△ABC;故本选项不符合题意;第7页(共23页)B、当∠ADE=∠C时,△ADE∽△ABC;故本选项不符合题意;C、当=时,△ADE∽△ABC;故本选项不符合题意;D、当=时,不能推断△ADE与△ABC相似;故选项符合题意;故选:D.4.(4分)已知、、都是非零向量,如果=2,=﹣2,那么下列说法中,错误的是()A.∥B.||=||C.=0D.与方向相反【分析】根据平面相等向量的定义、共线向量的定义以及向量的模的计算方法解答.【解答】解:A、因为=2,=﹣2,所以∥,且与方向相反,故本选项说法正确;B、因为=2,=﹣2,所以||=||=|2|,故选项说法正确;C、因为=2,=﹣2,所以∥,则•=0,故本选项说法错误;D、因为=2,=﹣2,所以∥,且与方向相反,故本选项说法正确;故选:C.5.(4分)已知⊙O1和⊙O2,其中⊙O1为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于()A.1B.4C.5D.8【分析】根据两圆位置关系是内切,则圆心距=两圆半径之差,以及外切时,r+R=d,分别求出即可.【解答】解:∵两圆相内切,设小圆半径为x,圆心距为2,∴3﹣x=2,∴x=1,∴小圆半径为1,这两圆外切时,圆心距为:1+3=4.故选:B.6.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE经过重心G,第8页(共23页)在下列四个说法中①=;②=;③=;④=,正确的个数是()A.1个B.2个C.3个D.4个【分析】连接AG并延长,交BC于F,依据DE∥BC,且DE经过重心G,即可得到△ADE∽△ABC,且相似比为2:3,依据相似三角形的性质,即可得到正确结论.【解答】解:如图所示,连接AG并延长,交BC于F,∵DE∥BC,且DE经过重心G,∴△ADE∽△ABC,∴===,故①正确;∴=,故③正确;∵DG∥BF,∴==,故②错误;∵△ADE∽△ABC,=,∴=,∴=,故④正确;故选:C.第9页(共23页)二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果=,那么的值是.【分析】直接根据已知用同一未知数表示出各数,进而得出答案.【解答】解:∵=,∴设x=7a,则y=2a,那么==.故答案为:.8.(4分)化简:3()﹣2()=.【分析】平面向量的运算法则也符合实数的运算法则.【解答】解:3()﹣2()=3+﹣2+2=(3﹣2)+(+2)=.故答案是:.9.(4分)如果抛物线y=2x2+x+m﹣1经过原点,那么m的值等于1.【分析】把原点坐标代入抛物线解析式即可得到对应m的值.【解答】解:把(0,0)代入y=2x2+x+m﹣1得m﹣1=0,解得m=1,故答案为1.10.(4分)将抛物线y=(x+3)2﹣4先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是(x+1)2﹣1.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=(x+3)2﹣4向右平移2个单位所得直线解析式为:y=(x+3﹣2)2﹣4=(x+1)2﹣4;再向上平移3个单位为:y=(x+1)2﹣4+3,即y=(x+1)2﹣1.第10页(共23页)故答案是:y=(x+1)2﹣1.11.(4分)已知抛物线y=2x2+bx﹣1的对称轴是直线x=1,那么b的值等于﹣4.【分析】由对称轴公式可得到关于b的方程,可求得答案.【解答】解:∵y=2x2+bx﹣1,∴抛物线对称轴为x=﹣=﹣,∴﹣=1,解得b=﹣4,故答案为:﹣4.12.(4分)已知△ABC三边的比为2:3:4,与它相似的△A′B′C′最小边的长等于12,那么△A′B′C′最大边的长等于24.【分析】由于△A′B′C′∽△ABC,因此它们各对应边的比都相等,可据此求出△A′B′C′的最大边的长.【解答】解:设△A′B′C′的最大边长是x,根据相似三角形的对应边的比相等,可得:=,解得:x=24,∴△A′B′C′最大边的长等于24.故答案为:24.13.(4分)在Rt△ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是.【分析】我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.代入数据直接计算得出答案.【解答】解:∵∠ACB=90°,AB=3,BC=1,∴∠A的正弦值sinA==,故答案为:.14.(4分)正八边形的中心角为45度.【分析】根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.第11页(共23页)15.(4分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,tan∠ABD=,BC=5,那么DC的长等于2.【分析】根据垂直的定义得到∠ABD=∠C,根据正切的定义得到BD=CD,根据勾股定理计算即可.【解答】解:∵AB⊥BC,∴∠ABD+∠DBC=90°,∵BD⊥DC,∴∠C+∠DBC=90°,∴∠ABD=∠C,∴tanC==,∴BD=CD,由勾股定理得,BD2+CD2=BC2,即(CD)2+CD2=52,解得,CD=2,故答案为:2.16.(4分)如图,AB∥CD,AD、BC相交于点E,过E作EF∥CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于15.【分析】由△ABE∽△DCE,推出==,可得=,再证明△BEF∽△BCD,第12页(共23页)可得==,由此即可解决问题.【解答】解:∵AB∥CD,∴△ABE∽△DCE,∴==