行列式及矩阵的计算(课堂练习)一、填空1.已知三阶方阵A的行列式为3,则2A=-242.设12,01A1()32xgxx,则()gA=08003.设,,为3维列向量,记矩阵(,,),(,,)AB,若3,AB则=,,,,64.行列式11111111x的展开式中,x的系数是2.5.设1201A则kA1021k。(k为正整数).6.设321,,,21,都是四维列向量,且四阶行列式1123,,,m,1232,,,n,则12312,,,216mn解:11231232,,,2,,,D14412312322,,,(1),,,16mn7.已知四阶行列式D中第三列元素分别为1,3,2,2,它们对应的余子式分别为3,2,1,1,则行列式D=-3.解:D=1×3+3×(-2)+(-2)×1+2×1=-3二、判断题1.设A、B均为n阶方阵,则ABAB.(×)2.设A、B均为n阶方阵,则ABAB.(√)三、行列式计算(1)4333343333433334nD解:nDncccccc1312143313343133341333313nnnn11312rrrrrrn10000100001033313n=13n(2)11111231149118271D解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2-1)=-240五、a为何值时,线性方程组:aaxxxxaxxxxxa322321321321有唯一解?解:2)1)(2(111111detaaaaaA,2a且1a时,有唯一解.