专题强化八带电粒子(带电体)在电场中运动的综合问题专题解读1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合运用,高考常以计算题出现.2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析特别是曲线运动(平抛运动、圆周运动)的方法与技巧,熟练应用能量观点解题.3.用到的知识:受力分析、运动分析、能量观点.一、带电粒子在电场中运动1.分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的力学规律如牛顿运动定律、运动学公式、动能定理、能量守恒定律解题.2.受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略.一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用.二、用能量观点处理带电体的运动对于受变力作用的带电体的运动,必须借助于能量观点来处理.即使都是恒力作用的问题,用能量观点处理也常常显得简洁.具体方法常有两种:1.用动能定理处理思维顺序一般为:(1)弄清研究对象,明确所研究的物理过程.(2)分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功.(3)弄清所研究过程的始、末状态(主要指动能).(4)根据W=ΔEk列出方程求解.2.用包括电势能和内能在内的能量守恒定律处理列式的方法常有两种:(1)利用初、末状态的能量相等(即E1=E2)列方程.(2)利用某些能量的减少等于另一些能量的增加(即ΔE=ΔE′)列方程.3.两个结论(1)若带电粒子只在电场力作用下运动,其动能和电势能之和保持不变.(2)若带电粒子只在重力和电场力作用下运动,其机械能和电势能之和保持不变.命题点一带电粒子在交变电场中的运动1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等.2.常见的题目类型(1)粒子做单向直线运动(一般用牛顿运动定律求解).(2)粒子做往返运动(一般分段研究).(3)粒子做偏转运动(一般根据交变电场特点分段研究).3.思维方法(1)注重全面分析(分析受力特点和运动规律):抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件.(2)从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系.(3)注意对称性和周期性变化关系的应用.例1如图1(a)所示,两平行正对的金属板A、B间加有如图(b)所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P处.若在t0时刻释放该粒子,粒子会时而向A板运动,时而向B板运动,并最终打在A板上.则t0可能属于的时间段是()图1A.0<t0<T4B.T2<t0<3T4C.3T4<t0<TD.T<t0<9T8答案B解析设粒子的速度方向、位移方向向右为正.依题意知,粒子的速度方向时而为正,时而为负,最终打在A板上时位移为负,速度方向为负.分别作出t0=0、T4、T2、3T4时粒子运动的v-t图象,如图所示.由于v-t图线与时间轴所围面积表示粒子通过的位移,则由图象知,0<t0<T4与3T4<t0<T时粒子在一个周期内的总位移大于零,T4<t0<3T4时粒子在一个周期内的总位移小于零;t0>T时情况类似.因粒子最终打在A板上,则要求粒子在每个周期内的总位移应小于零,对照各项可知B正确.变式1如图2所示,A、B两金属板平行放置,在t=0时将电子从A板附近由静止释放(电子的重力忽略不计).分别在A、B两板间加上下列哪种电压时,有可能使电子到不了B板()图2答案B变式2(多选)(2015·山东理综·20)如图3甲所示,两水平金属板间距为d,板间电场强度的变化规律如图乙所示.t=0时刻,质量为m的带电微粒以初速度v0沿中线射入两板间,0~T3时间内微粒匀速运动,T时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g.关于微粒在0~T时间内运动的描述,正确的是()图3A.末速度大小为2v0B.末速度沿水平方向C.重力势能减少了12mgdD.克服电场力做功为mgd答案BC解析因0~T3时间内微粒匀速运动,故E0q=mg;在T3~2T3时间内,粒子只受重力作用,做平抛运动,在t=2T3时刻的竖直速度为vy1=gT3,水平速度为v0;在2T3~T时间内,由牛顿第二定律2E0q-mg=ma,解得a=g,方向向上,则在t=T时刻,vy2=vy1-gT3=0,粒子的竖直速度减小到零,水平速度为v0,选项A错误,B正确;微粒的重力势能减小了ΔEp=mg·d2=12mgd,选项C正确;从射入到射出,由动能定理可知,12mgd-W电=0,可知克服电场力做功为12mgd,选项D错误;故选B、C.命题点二用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图4所示,则F合为等效重力场中的“重力”,g′=F合m为等效重力场中的“等效重力加速度”,F合的方向等效为“重力”的方向,即在等效重力场中的竖直向下方向.图42.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小(称为临界速度)的点.例2如图5所示,半径为r的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m、带电荷量为+q的珠子,现在圆环平面内加一个匀强电场,使珠子由最高点A从静止开始释放(AC、BD为圆环的两条互相垂直的直径),要使珠子沿圆弧经过B、C刚好能运动到D.(重力加速度为g)图5(1)求所加电场的场强最小值及所对应的场强的方向;(2)当所加电场的场强为最小值时,求珠子由A到达D的过程中速度最大时对环的作用力大小;(3)在(1)问电场中,要使珠子能完成完整的圆周运动,在A点至少应使它具有多大的初动能?答案见解析解析(1)根据题述,珠子运动到BC弧中点M时速度最大,作过M点的直径MN,设电场力与重力的合力为F,则其方向沿NM方向,分析珠子在M点的受力情况,由图可知,当F电垂直于F时,F电最小,最小值为:F电min=mgcos45°=22mgF电min=qEmin解得所加电场的场强最小值Emin=2mg2q,方向沿∠AOB的角平分线方向指向左上方.(2)当所加电场的场强为最小值时,电场力与重力的合力为F=mgsin45°=22mg把电场力与重力的合力看做是“等效重力”,对珠子由A运动到M的过程,由动能定理得F(r+22r)=12mv2-0在M点,由牛顿第二定律得:FN-F=mv2r联立解得FN=(322+1)mg由牛顿第三定律知,珠子对环的作用力大小为FN′=FN=(322+1)mg.(3)由题意可知,N点为等效最高点,只要珠子能到达N点,就能做完整的圆周运动,珠子在N点速度为0时,所需初动能最小,此过程中,由动能定理得:-F(r-22r)=0-EkA解得EkA=2-12mgr.变式3(2018·陕西西安质检)如图6所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h的A处由静止开始下滑,沿轨道ABC运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R,斜面倾角为θ=60°,sBC=2R.若使小球在圆环内能做完整的圆周运动,h至少为多少?(sin37°=0.6,cos37°=0.8)图6答案7.7R解析小球所受的重力和电场力都为恒力,故可将两力等效为一个力F,如图所示.可知F=1.25mg,方向与竖直方向成37°角.由图可知,小球做完整的圆周运动的临界点是D点,设小球恰好能通过D点,即到达D点时圆环对小球的弹力恰好为零.由圆周运动知识得:F=mvD2R,即:1.25mg=mvD2R小球由A运动到D点,由动能定理结合几何知识得:mg(h-R-Rcos37°)-34mg·(htanθ+2R+Rsin37°)=12mvD2,联立解得h≈7.7R.命题点三电场中的力电综合问题1.力学规律(1)动力学规律:牛顿运动定律结合运动学公式.(2)能量规律:动能定理或能量守恒定律.2.电场规律(1)电场力的特点:F=Eq,正电荷受到的电场力与场强方向相同.(2)电场力做功的特点:WAB=FLABcosθ=qUAB=EpA-EpB.3.多阶段运动在多阶段运动过程中,当物体所受外力突变时,物体由于惯性而速度不发生突变,故物体在前一阶段的末速度即为物体在后一阶段的初速度.对于多阶段运动过程中物体在各阶段中发生的位移之间的联系,可以通过作运动过程草图来获得.例3(2017·全国卷Ⅰ·25)真空中存在电场强度大小为E1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变.持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点.重力加速度大小为g.(1)求油滴运动到B点时的速度;(2)求增大后的电场强度的大小;为保证后来的电场强度比原来的大,试给出相应的t1和v0应满足的条件.已知不存在电场时,油滴以初速度v0做竖直上抛运动的最大高度恰好等于B、A两点间距离的两倍.答案见解析解析(1)油滴带电性质不影响结果.设该油滴带正电,油滴质量和电荷量分别为m和q,油滴速度方向向上为正.油滴在电场强度大小为E1的匀强电场中做匀速直线运动,故匀强电场方向向上.在t=0时,电场强度突然从E1增加至E2,油滴做竖直向上的匀加速运动,加速度方向向上,大小a1满足qE2-mg=ma1①油滴在t1时刻的速度为v1=v0+a1t1②电场强度在t1时刻突然反向,之后油滴做匀变速直线运动,加速度方向向下,大小a2满足qE2+mg=ma2③油滴在t2=2t1时刻,即运动到B点时的速度为v2=v1-a2t1④由①②③④式得v2=v0-2gt1⑤(2)由题意,在t=0时刻前有qE1=mg⑥油滴从t=0到t1时刻的位移为x1=v0t1+12a1t12⑦油滴在从t1时刻到t2=2t1时刻的时间间隔内的位移为x2=v1t1-12a2t12⑧由题给条件有v20=2g×2h=4gh⑨式中h是B、A两点之间的距离.若B点在A点之上,依题意有x1+x2=h⑩由①②③⑥⑦⑧⑨⑩式得E2=[2-2v0gt1+14(v0gt1)2]E1⑪为使E2>E1,应有2-2v0gt1+14(v0gt1)2>1⑫解得0<t1<(1-32)v0g⑬或t1>(1+32)v0g⑭条件⑬式和⑭式分别对应于v2>0和v2<0两种情形.若B在A点之下,依题意有x2+x1=-h⑮由①②③⑥⑦⑧⑨⑮式得E2=[2-2v0gt1-14(v0gt1)2]E1⑯为使E2E1,应有2-2v0gt1-14(v0gt1)21⑰解得t1(52+1)v0g⑱另一解为负,不符合题意,舍去.变式4(2017·全国卷Ⅱ·25)如图7所示,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场.自该区域上方的A点将质量均为m,电荷量分别为q和-q(q0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时的动能的1.5倍.不计空气阻力,重力加速度大小为g.求:图7(1)M与N在电场中沿水平方向的位移之比;(2)A点距电场上边界的高度;(3)该电场的电场强度大小.答案(1)3∶1(2)13H(3)2mg2q解析(1)设小球M、N在A点水平射出时的初速度大小为v0,则它们进入电场时的水平速度仍然为v0.M、N在电场中运动的时间t相等,电场力作用下产生的加速度沿水平方向,大小均为a,在电场中