高等数学(二)命题预测试卷(二)一、选择题(本大题共5个小题,每小题4分,共20分。在每个小题给出的选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.下列函数中,当1x时,与无穷小量)1(x相比是高阶无穷小的是()A.)3ln(xB.xxx232C.)1cos(xD.12x2.曲线xxy133在),1(内是()A.处处单调减小B.处处单调增加C.具有最大值D.具有最小值3.设)(xf是可导函数,且1)()2(lim000hxfhxfx,则)(0xf为()A.1B.0C.2D.214.若1)1(xxxf,则10)(dxxf为()A.21B.2ln1C.1D.2ln5.设xuxyuz,等于()A.zzxyB.1zxyC.1zyD.zy二、填空题:本大题共10个小题,10个空,每空4分,共40分,把答案填在题中横线上。6.设2yxezxy,则)2,1(yz=.7.设xexfxln)(,则)3(f.8.xxxf1)(,则)1(xf.9、设。10.xxx)211(lim=.11.函数)(21)(xxeexf的极小值点为.12.若314lim21xaxxx,则a.13.曲线xyarctan在横坐标为1点处的切线方程为.14.函数20sinxtdty在2x处的导数值为.15.1122cos1sindxxxx.三、解答题:本大题共13小题,共90分,解答应写出推理、演算步骤。16.(本题满分6分)计算121lim2xxxx.17.(本题满分6分)设函数01)1ln(0)(1xxxxexfx,求)(xf.18.(本题满分6分)求函数)sin(yxy的二阶导数.19.(本题满分6分)求曲线342)(xxxf的极值点.20.(本题满分6分)计算dxxx123.21.(本题满分6分)若)(xf的一个原函数为xxln,求dxxfx)(.参考答案一、选择题1.B2.B3.D4.D5.D二、填空题6.122e7.313e8.11x9.010.21e11.0x12.513.)1(214xy14.4sin215.0三、解答题16.解原式=222112111lim121lim222xxxxxxxx.17.解首先在0x时,分别求出函数各表达式的导数,即当0x时,)11(1)()(12111xexxeexexfxxxx当01x时,11)1ln()(xxxf.然后分别求出在0x处函数的左导数和右导数,即111lim)0(0xfx0)11(lim)0(10xefxx从而)0()0(ff,函数在0x处不可导.所以0110)11()(1xxxxexfx18.解)sin(yxy)cos()cos()1)(cos(yxyyxyyxy①)1()sin()cos()1)(sin(yyxyyxyyyxy2)1)(sin()cos(1yyxyyx)cos(1)1)(sin(2yxyyxy②又由①解得)cos(1)cos(yxyxy代入②得2)cos(1)cos(1)cos(1)cos(yxyxyxyxy3)cos(1)sin(yxyx19.解先出求)(xf的一阶导数:)23(464)(223xxxxxf令0)(xf即0)23(42xx解得驻点为23,021xx.再求出)(xf的二阶导数)1(121212)(2xxxxxf.当232x时,09)23(f,故1627)23(f是极小值.当01x时,0)0(f,在)0,(内,0)(xf,在)23,0(内0)(xf故01x不是极值点.总之曲线242)(xxxf只有极小值点23x.20.解11)1(112222323xxxxxxxxxxxxxdxxxxdxdxxxxdxxx1)1(12223Cxxxxdx)1ln(21211)1(2121222221.解由题设知1ln)(lnln)ln()(xxxxxxxf故dxxxdxxfx)1(ln)(xdxxdxxln222121lnxdxx22221)(lnln21xxdxxx22221121ln21xdxxxxx222121ln21xxdxxxCxxx2241ln21.