当前位置:首页 > 幼儿/小学教育 > 小学教育 > 八年级数学北师大版下学期期末复习
年级初二学科数学版本北师大版内容标题初二数学北师大版下学期期末复习编稿老师巩建兵【本讲教育信息】一.教学内容:初二数学北师大版期末复习二.教学目标:1.掌握相似多边形和位似图形的性质.2.了解频数分布直方图的意义和作用,会计算极差、方差、标准差,并根据计算结果对实际问题作出评判.3.初步掌握用综合法证明的格式.三.知识要点分析:1.相似多边形和位似图形(1)相似多边形的性质①相似多边形的周长比等于相似比.②相似多边形的面积比等于相似比的平方.(2)位似图形的判别①位似图形是特殊的相似形,因此判断两个图形是不是位似图形,应先判断它们是否相似,若不相似,则一定不是位似图形.②若两图形已相似,再看其对应点所在直线是否都是经过同一个点,若这一条件成立,则两图形是位似图形,否则这两个图形就不是位似图形.2.数据的收集与处理知识结构:实际问题数据收集数据表示数据处理解决实际问题作出决策直接收集—调查(普查、抽样调查)间接收集平均水平(平均数、中位数、众数)离散程度(极差、方差、标准差)3.证明(一)知识结构:定义命题证明平行线三角形判定性质内角和定理内角和定理的推论【典型例题】知识点1:相似多边形和位似图形例1.如图所示,在△ABC中,DE∥BC,AD=3BD,S△ABC=48,求S△ADE.ABCDE题意分析:由DE∥BC可知∠ADE=∠ABC,∠AED=∠ACB,从而得出△ADE∽△ABC,由AD=3BD可得AD∶AB=3∶4.思路分析:要求△ADE的面积,用常规的面积公式不可求.因为已知△ABC的面积,所以用相似三角形的面积比等于相似比的平方来解.解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADES△ABC=AD2AB2=AD2(AD+BD)2=(34)2.∴S△ADE=(34)2×S△ABC=(34)2×48=27.解题后的思考:在利用相似三角形、相似多边形的性质解决周长和面积问题时,注意对应关系,如本题中△ADE和△ABC的相似比是ADAB=34,S△ADES△ABC=(34)2,不要弄错顺序.例2.按如下方法将△ABC的三边缩小为原来的12;如图所示,任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法中正确的个数是().①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比为2∶1;④△ABC与△DEF的面积比为4∶1.A.1B.2C.3D.4OABCDEF题意分析:根据题意将△ABC的三边缩小为原来的12得△DEF,那么△DEF和△ABC相似且相似比为12,这两个三角形对应点的连线交于同一点O,所以它们又是位似图形.思路分析:根据相似三角形的性质,△ABC和△DEF的周长比等于相似比,面积比等于相似比的平方.所以本题①、②、③、④均正确.解:D解题后的思考:相似图形和位似图形的不同点在于:位似图形是一种特殊的相似图形,对应点的连线交于同一点,而相似图形未必都能构成位似关系.小结:相似图形的形状相同,大小不同,因此相似图形的性质可总结为:对应角相等,对应边成比例.进一步得出周长比等于相似比,面积比等于相似比的平方.知识点2:数据的收集与处理例3.某股民就A、B两种股票的价格作了近10天的记录:A股票76.590.584.586.581.587.586.582.585.583.5B股票82.584.589.579.580.591.589.579.585.574.5(1)用折线图分别表示这两种股票价格的升降情况.(2)分别计算它们的方差,并说明这两种股票在价格上所反映的特点是什么?题意分析:本题第(1)问是用折线图表示这两种股票的趋势,第(2)问是用方差对这两种股票的价格作出评判.思路分析:折线图以时间为横轴、价格为纵轴,先描点,再连线.求方差时应先求平均数.解:(1)如图所示:(2)先计算平均数:-xA=110(76.5+90.5+84.5+86.5+81.5+87.5+86.5+82.5+85.5+83.5)=84.5.-xB=110(82.5+84.5+89.5+79.5+80.5+91.5+89.5+79.5+85.5+74.5)=83.7.再计算方差:2As=110[(84.5-76.5)2+(84.5-90.5)2+…+(84.5-83.5)2]=13.2;2Bs=110[(83.7-82.5)2+(83.7-84.5)2+…+(83.7-74.5)2]=26.36.由于A股票价格方差13.2<B股票价格方差26.36,所以从这10天的股票价格来看,A股票波动较小,B股票波动较大.解题后的思考:计算方差时,由于数据较复杂,可借助计算器或计算机.例4.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计,请你根据下面尚未完成并有局部污损的频数分布表和频数分布直方图,解答下列问题:(1)填充频数分布表中的空格;(2)补全频数分布直方图;(3)在该问题中样本容量是多少?(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?题意分析:本题要求补全频数分布直方图和频数分布表,再根据图表回答其他问题.思路分析:补全频数分布表时方法很多,关键是正确理解频数与频率的含义.方法一:先确定频数总和4÷0.08=50,再填写其他表格.方法二:先根据频率和为1确定第5组的频率,再求其他表格.解:(1)1-(0.08+0.16+0.2+0.32)=0.24.则90.5~100的频率为0.24,设其频数为x,则160.32=x0.24,x=16×0.240.32=12.合计:频数为4+8+10+16+12=50,频率=1.(2)如图所示:(3)样本容量为50.(4)落在80.5~90.5分范围内的人数最多.(5)1250×900=216(人).解题后的思考:解决频数分布直方图问题时,常用的两个数量关系是:各小组频率之和为1;频数分布直方图中条形块的高度与其频数(或频率)成正比.小结:关于数据的收集与处理重点体会普查和抽样调查的优缺点,数据表示的有关概念以及刻画数据离散程度的几个量度—极差、方差和标准差,学会用频数分布直方图处理数据.知识点3:证明(一)例5.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;……;∠A2008BC与∠A2008CD的平分线相交于点A2009,得∠A2009.则∠A2009=__________.ABCDA1A2题意分析:已知∠A=α,根据题意可知所求的∠A2009一定与∠A有关系.思路分析:如图,∠ACD=∠A+∠ABC,有12∠ACD=12∠A+12∠ABC.∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1CD=12∠ACD,∠A1BC=12∠ABC.∴∠A1CD=12∠A+∠A1BC.∴∠A1=∠A1CD-∠A1BC=12∠A.同理∠A2=12∠A1=14∠A,∠A3=18∠A,…∠A2009=122009∠A=α22009.解:α22009解题后的思考:本题是一道综合创新型的问题,既考查三角形内角与外角的关系,又考查探究规律,归纳推理的能力.例6.如图所示,已知CE为△ABC外角∠ACD的平分线,CE交BA的延长线于点E,求证:∠BAC>∠B.ABCDE12题意分析:由CE平分∠ACD得∠1=∠2,所求证的∠BAC和∠B不是同一三角形的内角和外角.思路分析:∠BAC是△ACE的一个外角,∠2是△BCE的一个外角,所以∠BAC>∠1,∠2>∠B,而∠1=∠2,所以∠BAC>∠B.证明:∵CE平分∠ACD(已知),∴∠1=∠2(角平分线定义).∵∠BAC>∠1(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BAC>∠2(等量代换).∵∠2>∠B(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BAC>∠B(不等式的基本性质).解题后的思考:本题不能直接利用“三角形的一个外角大于任何一个和它不相邻的内角”,必须要找一个中间量进行代换.小结:这部分内容的许多结论都是大家非常熟悉的,重点体验证明的基本方法和过程,体会公理化方法在数学中的作用.四.本讲小结:本讲内容主要有:一、概念,包括相似多边形、位似图形、普查、抽样调查、总体、个体、样本、频数分布直方图、极差、方差、定义、定理、公理、推论等;二、一个重要的数学思想:用样本估计总体的思想;三、一个重要的数学方法:综合法证明.【模拟试题】(答题时间:50分钟)一.选择题1.下列调查适合普查的是()A.调查2009年6月份市场上某品牌饮料的质量B.了解中央电视台直播北京奥运会开幕式的全国收视率情况C.环保部门调查5月份黄河某段水域的水的质量情况D.了解全班同学本周末参加社区活动的时间2.若分式2x-1有意义,则x的取值范围是()A.x≠1B.x>1C.x=1D.x<13.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是()A.个体B.总体C.样本容量D.总体的一个样本4.如图,直线l1∥l2,则α为()A.150°B.140°C.130°D.120°αl1l2130°70°5.不等式组x-2≥-13x-1>8的解集在数轴上可表示为()01234012340123401234ACBD6.把x3-2x2y+xy2分解因式,结果正确的是()A.x(x+y)(x-y)B.x(x2-2xy+y2)C.x(x+y)2D.x(x-y)27.如图,下列推理不正确...的是()A.∵AB∥CD,∴∠ABC+∠C=180°B.∵∠1=∠2,∴AD∥BCC.∵AD∥BC,∴∠3=∠4D.∵∠A+∠ADC=180°,∴AB∥CDABCD2314*8.解分式方程1-xx-2+2=12-x,可知方程()A.解为x=2B.解为x=4C.解为x=3D.无解二.填空题1.因式分解:a2-b2-2b-1=__________.2.如图,AB//CD,CE平分∠ACD,若∠1=25°,那么∠2的度数是__________.ABCDE123.如图所示,在△ABC中,DE∥BC,若AD=1、DE=2、BD=3,则BC=__________.ABCDE4.为了了解一个养鸡场里鸡的生长情况,从中抽取了5只,称得它们的重量如下(单位:kg):3.0、3.4、3.1、3.3、3.2,在这个问题中,方差s2=__________.*5.如图所示,在平行四边形ABCD中,E为BC延长线上一点,AE交DC于F,若BC∶CE=3∶1,则S△ADF∶S△ECF=__________.ABCDEF**6.某射击爱好者在一次练习时共射击10次,前6次射击共中53环(环数均为整数).如果他想取得不低于89环的成绩,则第7次射击不能少于__________环.三.解答题1.解不等式:3x>x+2,并在数轴上表示解集.2.先化简,再求值:(3aa-1-aa+1)·a2-1a,其中a=2.3.在“汶川地震”捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数比乙班捐款人数多3人,甲班共捐款2400元,乙班共捐款1800元,乙班平均每人捐款的钱数是甲班平均每人捐款钱数的45倍.求甲、乙两班各有多少人捐款?4.为了了解我校九年级400名学生的数学毕业考试成绩,从中抽取了50名学生的数学成绩进行分析,如图是根据50名学生的数学成绩画出的频数分布直方图.(1)根据题中给出的条件将频数分布直方图补充完整;(2)77~81分这一小组的频率为__________;(3)在这次毕业考试中,该校九年级学生的数学成绩在87~96分范围内的有多少人.**5.如图所示,△ABC和△DEF均为正三角形,D和E分别在AB和BC上,请找出一个与△DBE相似的三角形并说明理由.ABCDEFGH
本文标题:八年级数学北师大版下学期期末复习
链接地址:https://www.777doc.com/doc-2695695 .html