The Riemann Zeta Function(by David Jekel)黎曼zeta函数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

TheRiemannZetaFunctionDavidJekelJune6,2013In1859,BernhardRiemannpublishedaneight-pagepaper,inwhichheestimated\thenumberofprimenumberslessthanagivenmagnitudeusingacertainmeromorphicfunctiononC.ButRiemanndidnotfullyexplainhisproofs;ittookdecadesformathematicianstoverifyhisresults,andtothisdaywehavenotprovedsomeofhisestimatesontherootsof.EvenRiemanndidnotprovethatallthezerosoflieonthelineRe(z)=12.ThisconjectureiscalledtheRiemannhypothesisandisconsideredbymanythegreatestunsolvedprobleminmathematics.H.M.Edwards'bookRiemann'sZetaFunction[1]explainsthehistor-icalcontextofRiemann'spaper,Riemann'smethodsandresults,andthesubsequentworkthathasbeendonetoverifyandextendRiemann'stheory.The rstchaptergiveshistoricalbackgroundandexplainseachsectionofRiemann'spaper.Therestofthebooktraceslaterhistoricaldevelopmentsandjusti esRiemann'sstatements.Thispaperwillsummarizethe rstthreechaptersofEdwards.MypapercanserveasanintroductiontoRiemann'szetafunction,withproofsofsomeofthemainformulae,foradvancedundergraduatesfamiliarwiththerudimentsofcomplexanalysis.Iusetheterm\summarizeloosely;insomesectionsmydiscussionwillactuallyincludemoreexplanationandjusti cation,whileinothersIwillonlygivethemainpoints.ThepaperwillfocusonRiemann'sde nitionof,thefunctionalequation,andtherelationshipbetweenandprimes,culminatinginathoroughdiscussionofvonMangoldt'sformula.1Contents1Preliminaries32De nitionoftheZetaFunction32.1Motivation:TheDirichletSeries................42.2IntegralFormula.........................42.3De nitionof...........................53TheFunctionalEquation63.1FirstProof............................73.2SecondProof...........................84anditsProductExpansion94.1TheProductExpansion.....................94.2ProofbyHadamard'sTheorem.................105ZetaandPrimes:Euler'sProductFormula126Riemann'sMainFormula:Summary137VonMangoldt'sFormula157.1FirstEvaluationoftheIntegral.................157.2SecondEvaluationoftheIntegral................177.3TermwiseEvaluationover...................197.4VonMangoldt'sandRiemann'sFormulae...........2221PreliminariesBeforewegettothezetafunctionitself,Iwillstate,withoutproof,someresultswhichareimportantforthelaterdiscussion.Icollectthemheresosubsequentproofswillhavelessclutter.Theimpatientreadermayskipthissectionandreferbacktoitasneeded.Inordertode nethezetafunction,weneedthegammafunction,whichextendsthefactorialfunctiontoameromorphicfunctiononC.LikeEdwardsandRiemann,Iwillnotusethenowstandardnotation(s)where(n)=(n1)!,butinsteadIwillcallthefunction(s)and(n),willben!.Igiveade nitionandsomeidentitiesof,aslistedinEdwardssection1.3.De nition1.Foralls2Cexceptnegativeintegers,(s)=limN!1(N+1)sNYn=1ns+n:Theorem2.ForRe(s)1,(s)=R10exxsdx.Theorem3.satis es1.(s)=Q1n=1(1+s=n)1(1+1=n)s2.(s)=s(s1)3.(s)(s)sins=s4.(s)=2p(s=2)(s=21=2).Sincewewilloftenbeinterchangingsummationandintegration,thefollowingtheoremonabsoluteconvergenceisuseful.Itisaconsequenceofthedominatedconvergencetheorem.Theorem4.Supposefnisnonnegativeandintegrableoncompactsub-setsof[0;1).IfPfnconvergesandR10Pfnconverges,thenPR10fn=R10Pfn.2De nitionoftheZetaFunctionHereIsummarizeEdwardssection1.4andgiveadditionalexplanationandjusti cation.32.1Motivation:TheDirichletSeriesDirichletde ned(s)=P1n=1nsforRe(s)1.Riemannwantedadef-initionvalidforalls2C,whichwouldbeequivalenttoDirichlet'sforRe(s)1.HefoundanewformulafortheDirichletseriesasfollows.ForRe(s)1,byEuler'sintegralformulafor(s)2,Z10enxxs1dx=1nsZ10exxs1dx=(s1)ns:Summingovernandapplyingtheformulaforageometricseriesgives(s1)1Xn=11ns=1Xn=1Z10enxxs1dx=Z10exxs11exdx=Z10xs1ex1dx:Wearejusti edininterchangingsummationandintegrationbyTheorem4becausetheintegralontherightconvergesatbothendpoints.Asx!0+,ex1behaveslikex,sothattheintegralbehaveslikeRa0xs2dxwhichcon-vergesforRe(s)1.Theintegralconvergesattherightendpointbecauseexgrowsfasterthananypowerofx.2.2IntegralFormulaToextendthisformulatoC,Riemannintegrates(z)s=(ez1)overathepathofintegrationCwhich\startsat+1,movestotheoriginalongthe\topofthepositiverealaxis,circlestheorigincounterclockwiseinasmallcircle,thenreturnsto+1alongthe\bottomofthepositiverealaxis.Thatis,forsmallpositive,ZC(z)sez1dzz=Z+1+Zjzj=+Z+1!(z)sez1dzz:Noticethatthede nitionof(z)simplicitlydependsonthede nitionoflog(z)=logjzj+iarg(z).Inthe rstintegral,whenzliesonthenegativerealaxis,wetakearg(z)=i.Inthesecondintegral,thepathofintegrationstartsatz=orz=,andaszproceedscounterclockwisearoundthecircle,arg(z)increasesfromitoi.(Youcanthinkoftheimaginarypartofthelogfunctionasspiralstaircase,andgoingcounterclockwisearoundtheoriginashavingbroughtusuponelevel.)Inthelastintegral,arg(z)=i.(Thus,the rstandlastintegralsdonot4cancelaswewouldexpect!)Tostatethede nitionquiteprecisely,theintegraloverCisZ+1es(logzi)ez1dzz+Z20es(logi+i)eei1id+Z+1es(logz+i)ez1dzz:TheintegralsconvergebythesameargumentgivenaboveregardingR10xs1=(1ex)dx;infact,theyconvergeuniformlyoncompactsubsetsofC.Thisde nitionappearstodependon,butactuallydoesn

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功