高等数学(经管类)下、林伟初 郭安学主编、复旦大学出版社、课后习题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-习题7-11.指出下列各点所在的坐标轴、坐标面或卦限:A(2,1,-6),B(0,2,0),C(-3,0,5),D(1,-1,-7).解:A在V卦限,B在y轴上,C在xOz平面上,D在VIII卦限。2.已知点M(-1,2,3),求点M关于坐标原点、各坐标轴及各坐标面的对称点的坐标.解:设所求对称点的坐标为(x,y,z),则(1)由x-1=0,y+2=0,z+3=0,得到点M关于坐标原点的对称点的坐标为:(1,-2,-3).(2)由x=-1,y+2=0,z+3=0,得到点M关于x轴的对称点的坐标为:(-1,-2,-3).同理可得:点M关于y轴的对称点的坐标为:(1,2,-3);关于z轴的对称点的坐标为:(1,-2,3).(3)由x=-1,y=2,z+3=0,得到点M关于xOy面的对称点的坐标为:(-1,2,-3).同理,M关于yOz面的对称点的坐标为:(1,2,3);M关于zOx面的对称点的坐标为:(-1,-2,3).3.在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设所求的点为M(0,0,z),依题意有|MA|2=|MB|2,即(-40)2(10)2(7z)2(30)2(50)2(-2z)2解之得z=11,故所求的点为M(0,0,149).4.证明以M1(4,3,1),M2(7,1,2),M3(5,2,3)三点为顶点的三角形是一个等腰三角形.解:由两点距离公式可得21214MM,2213236,6MMMM所以以M1(4,3,1),M2(7,1,2),M3(5,2,3)三点为顶点的三角形是一个等腰三角形.5.设平面在坐标轴上的截距分别为a=2,b=-3,c=5,求这个平面的方程.解:所求平面方程为1235yxz。6.求通过x轴和点(4,-3,-1)的平面方程.解:因所求平面经过x轴,故可设其方程为Ay+Bz=0.又点(4,-3,-1)在平面上,所以-3A-B=0.即B=-3A代入并化简可得y-3z=0.7.求平行于y轴且过M1(1,0,0),M2(0,0,1)两点的平面方程.解:因所求平面平行于y轴,故可设其方程为Ax+Cz+D=0.又点M1和M2都在平面上,于是00ADCD可得关系式:A=C=-D,代入方程得:-Dx-Dz+D=0.显然D≠0,消去D并整理可得所求的平面方程为x+z-1=0.8.方程x2+y2+z2-2x+4y=0表示怎样的曲面?解:表示以点(1,-2,0)为球心,半径为5的球面方程。9.指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形?(1)x-2y=1;(2)x2+y2=1;(3)2x2+3y2=1;(4)y=x2.解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。(4)表示抛物线、抛物柱面。-2-习题7-21.下列各函数表达式:(1)已知f(x,y)=x2+y2,求(,)fxyxy;(2)已知22(,),fxyxyxy求f(x,y).解:(1)2222(,)()()fxyxyxyxyxxyy(2)2222(,)()2fxyxyxyxyxy所以22(,)2fxyxy2.求下列函数的定义域,并指出其在平面直角坐标系中的图形:(1)221sin1zxy;(2)2211zxy;(3)(,)1ln()fxyxxy;(4)222arcsin(3)(,)xyfxyxy解:(1)由2210xy可得221xy故所求定义域为D={(x,y)|221xy}表示xOy平面上不包含圆周的区域。(2)由221010xy可得1111xyy或故所求的定义域为D={(x,y)|1111xyy且或},表示两条带形闭域。(3)由100xxy可得1xyx故所求的定义域为D={(x,y)|1xyx且},表示xOy平面上直线y=x以下且横坐标1x的部分。(4)由2221310xyxy可得22224xyyx故所求的定义域为D={(x,y)|22224xyyx且}。3.说明下列极限不存在:(1)00limxyxyxy;(2)36200limxyxyxy.解:(1)当点P(x,y)沿直线y=kx趋于点(0,0)时,有(,)(0,0)0(1)1limlim(1)1xyxykxxykxkxykxk。-3-显然,此时的极限值随k的变化而变化。因此,函数f(x,y)在(0,0)处的极限不存在。(2)当点P(x,y)沿曲线3ykx趋于点(0,0)时,有33662262(,)(0,0)0limlim(1)1xyxykxxykxkxykxk。显然,此时的极限值随k的变化而变化。因此,函数f(x,y)在(0,0)处的极限不存在。4.计算下列极限:(1)01limxxyeyxy;(2)(,)(0,3)sin()limxyxyx;(3)33(,)(0,0)sin()limxyxyxy;(4)(,)(0,0)42limxyxyxy.解:(1)因初等函数(,)xeyfxyxy在(0,1)处连续,故有0011lim201xxyeyexy(2)(,)(0,3)(,)(0,3)sin()sin()limlim3xyxyxyxyyxxy(3)33332233(,)(0,0)(,)(0,0)sin()sin()limlim()0xyxyxyxyxxyyxyxy(4)(,)(0,0)(,)(0,0)(,)(0,0)42(42)(42)11limlimlim4(42)42xyxyxyxyxyxyxyxyxyxy。5.究下列函数的连续性:(1)22,(,)(0,0)(,)0,(,)(0,0)xyxyxyfxyxy(2)2222,(,)(0,0)(,)0,(,)(0,0)xyxyfxyxyxy解:(1)22(,)(0,0)(,)(0,0)limlim()0(0,0)xyxyxyxyfxy所以f(x,y)在(0,0)处连续.(2)22222222222(,)(0,0)01limlim1xyxykxxyxkxkxyxkxk该极限随着k的取值不同而不同,因而f(x,y)在(0,0)处不连续.6.下列函数在何处间断?(1)221zxy;(2)22ln1zxy.解:(1)z在{(x,y)|xy}处间断.(2)z在{(x,y)|221xy}处间断.-4-习题7-31.求下列函数偏导数:(1)z=x3+3xy+y3;(2)2sinyzx;(3)ln(3)zxy;(4)ln(00,1)yzxxyxyx,(5)zyux;(6)22cos()zuxye解:(1)2233,33.zzxyxyxy(2)222sin1,cos2.yzzyyxyxx(3)13,.33zzxxyyxy(4)1111,ln.yyyyzzyxyxxxxxyxyy(5)12,ln().zzyyuzuzxxxxyyy1ln()zyuxxzy(6)22sin()2,zuxyexx2222sin()(2)2sin().zzzxyeyyxyey22sin()()zzuxyeez22sin()zzexye2.求下列函数在指定点处的偏导数:(1)f(x,y)=x2-xy+y2,求fx(1,2),fy(1,2);(2)22(,)arctanxyfxyxy;求(1,0)xf(3)222222arctan()(,)lnsin(1)xxyfxyxyxe;求(1,2)xf;(4)(,,)ln()fxyzxyz,求(2,0,1),(2,0,1),(2,0,1)xyzfff.解:(1)(,)2,(,)2.xyfxyxyfxyxy(1,2)220,(1,2)143.xyff(2)21(,0)arctan,(,0)1xfxxfxx故因此11(1,0).112xf(3)2222arctan(4)1(,2)ln(4)sin(1)2xxfxxxe因此22222arctan(4)222arctan(4)22212(,2)cos(1)22412224sin(1).1(4)xxxxxxfxxxexxxxxexx-5-所以arctan(15)1(1,2)25xfe.(4)1(,,),(,,),(,,).xyzyzfxyzfxyzfxyzxyzxyzxyz故11(2,0,1),(2,0,1),(2,0,1)0.22xyzfff3.设222rxyz,证明:(1)2221rrrxyz;(2)2222222rrrrxyz;(3)2222222(ln)(ln)(ln)1rrrxyzr.证明:rx222xxyz,xr利用函数关于自变量的对称性,可推断得到:ry,yrrz.zr(1)2222222221xyzrrrrxyzrr(2)22222223rxrxrrrxxrxrrr利用函数关于自变量的对称性,可推断得到:2222222323,ryrrrzyrzr222222222233322.rxyrrrrrxyzrr(3)2222222(ln)1lnln(),2rxxrxyzxxyzr22222442(ln)2rrxrrrxxxrr利用函数关于自变量的对称性,可推断得到:2222222424(ln)2(ln)2,.rryrrzyrzr222222222242(ln)(ln)(ln)32()1rrrrxyzxyzrr.4.求下列函数的二阶偏导数22zx,22zy,2zyx:(1)322433zxxyxyxy;(2)ln()zxxy.解:(1)222212631,246.zzxxyyxyxx222361,6.zzxxyxyy(2)2222211ln(),.()()xyxxyzzxyxxxyxyxxyxy222,.()zxzxyxyyxy5.某水泥厂生产A,B两种标号的水泥,其日产量分别记作x,y(单位:吨),总成本(单位:-6-元)为C(x,y)=20+30x2+10xy+20y2,求当x=4,y=3时,两种标号水泥的边际成本,并解释其经济含义.解:(,)6010,(,)1040,xyCxyxyCxyxy(4,3)270,(,)160.xyCCxy经济含义:当A,B两种标号的水泥日产量分别4吨和3吨时,如果B水泥产量不变,而A水泥的产量每增加1吨,成本将增加270元;如果A水泥产量不变,而B水泥的产量每增加1吨,成本将增加160元。6.设某商品需求量Q与价格为p和收入y的关系为Q=400-2p+0.03y.求当p=25,y=5000时,需求Q对价格p和收入y的偏弹性,并解释其经济含义.解:(,)2,(,)0.03,pyQpyQpy(25,5000)2,(25,5000)0.03.pyQQ经济含义:价格为25和收入为5000时,如果价格不变,而收入增加1个单位,商品的需求量将增加

1 / 58
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功