随机事件和概率第一节基本概念1、排列组合初步(1)排列组合公式)!(!nmmPnm从m个人中挑出n个人进行排列的可能数。)!(!!nmnmCnm从m个人中挑出n个人进行组合的可能数。(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。(4)一些常见排列①特殊排列相邻彼此隔开顺序一定和不可分辨②重复排列和非重复排列(有序)③对立事件④顺序问题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(2)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA如果同时有BA,AB,则称事件A与事件B等价,或称A等于B:A=B。A、B中至少有一个发生的事件:AB,或者A+B。属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。A、B同时发生:AB,或者AB。AB=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的事件。互斥未必对立。②运算:结合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:11iiiiAABABA,BABA3、概率的定义和性质(1)概率的公理化定义设为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:1°0≤P(A)≤1,2°P(Ω)=13°对于两两互不相容的事件1A,2A,…有11)(iiiiAPAP常称为可列(完全)可加性。则称P(A)为事件A的概率。(2)古典概型(等可能概型)1°n21,,2°nPPPn1)()()(21。设任一事件A,它是由m21,组成的,则有P(A)=)()()(21m=)()()(21mPPPnm基本事件总数所包含的基本事件数A4、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(2)减法公式P(A-B)=P(A)-P(AB)当BA时,P(A-B)=P(A)-P(B)当A=Ω时,P(B)=1-P(B)(3)条件概率和乘法公式定义设A、B是两个事件,且P(A)0,则称)()(APABP为事件A发生条件下,事件B发生的条件概率,记为)/(ABP)()(APABP。条件概率是概率的一种,所有概率的性质都适合于条件概率。例如P(Ω/B)=1P(B/A)=1-P(B/A)乘法公式:)/()()(ABPAPABP更一般地,对事件A1,A2,…An,若P(A1A2…An-1)0,则有21(AAP…)nA)|()|()(213121AAAPAAPAP……21|(AAAPn…)1nA。(4)全概公式设事件nBBB,,,21满足1°nBBB,,,21两两互不相容,),,2,1(0)(niBPi,2°niiBA1,则有)|()()|()()|()()(2211nnBAPBPBAPBPBAPBPAP。此公式即为全概率公式。(5)贝叶斯公式设事件1B,2B,…,nB及A满足1°1B,2B,…,nB两两互不相容,)(BiP0,i1,2,…,n,2°niiBA1,0)(AP,则njjjiiiBAPBPBAPBPABP1)/()()/()()/(,i=1,2,…n。此公式即为贝叶斯公式。)(iBP,(1i,2,…,n),通常叫先验概率。)/(ABPi,(1i,2,…,n),通常称为后验概率。如果我们把A当作观察的“结果”,而1B,2B,…,nB理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。5、事件的独立性和伯努利试验(1)两个事件的独立性设事件A、B满足)()()(BPAPABP,则称事件A、B是相互独立的(这个性质不是想当然成立的)。若事件A、B相互独立,且0)(AP,则有)()()()()()()|(BPAPBPAPAPABPABP所以这与我们所理解的独立性是一致的。若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立。(证明)由定义,我们可知必然事件和不可能事件Ø与任何事件都相互独立。(证明)同时,Ø与任何事件都互斥。(2)多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。对于n个事件类似。两两互斥→互相互斥。两两独立→互相独立?(3)伯努利试验定义我们作了n次试验,且满足每次试验只有两种可能结果,A发生或A不发生;n次试验是重复进行的,即A发生的概率每次均一样;每次试验是独立的,即每次试验A发生与否与其他次试验A发生与否是互不影响的。这种试验称为伯努利概型,或称为n重伯努利试验。用p表示每次试验A发生的概率,则A发生的概率为qp1,用)(kPn表示n重伯努利试验中A出现)0(nkk次的概率,knkknnqpkPC)(,nk,,2,1,0。随机变量及其分布第一节基本概念在许多试验中,观察的对象常常是一个随同取值的量。例如掷一颗骰子出现的点数,它本身就是一个数值,因此P(A)这个函数可以看作是普通函数(定义域和值域都是数字,数字到数字)。但是观察硬币出现正面还是反面,就不能简单理解为普通函数。但我们可以通过下面的方法使它与数值联系起来。当出现正面时,规定其对应数为“1”;而出现反面时,规定其对应数为“0”。于是)(XX,当反面出现,当正面出现01称X为随机变量。又由于X是随着试验结果(基本事件)不同而变化的,所以X实际上是基本事件的函数,即X=X(ω)。同时事件A包含了一定量的ω(例如古典概型中A包含了ω1,ω2,…ωm,共m个基本事件),于是P(A)可以由P(X(ω))来计算,这是一个普通函数。定义设试验的样本空间为,如果对中每个事件都有唯一的实数值X=X(ω)与之对应,则称X=X(ω)为随机变量,简记为X。有了随机变量,就可以通过它来描述随机试验中的各种事件,能全面反映试验的情况。这就使得我们对随机现象的研究,从前一章事件与事件的概率的研究,扩大到对随机变量的研究,这样数学分析的方法也可用来研究随机现象了。一个随机变量所可能取到的值只有有限个(如掷骰子出现的点数)或可列无穷多个(如电话交换台接到的呼唤次数),则称为离散型随机变量。像弹着点到目标的距离这样的随机变量,它的取值连续地充满了一个区间,这称为连续型随机变量。1、随机变量的分布函数(1)离散型随机变量的分布率设离散型随机变量X的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为P(X=xk)=pk,k=1,2,…,则称上式为离散型随机变量X的概率分布或分布律。有时也用分布列的形式给出:,,,,,,,,|)(2121kkkpppxxxxXPX。显然分布律应满足下列条件:(1)0kp,,2,1k,(2)11kkp。(2)分布函数对于非离散型随机变量,通常有0)(xXP,不可能用分布率表达。例如日光灯管的寿命X,0)(0xXP。所以我们考虑用X落在某个区间],(ba内的概率表示。定义设X为随机变量,x是任意实数,则函数)()(xXPxF称为随机变量X的分布函数。)()()(aFbFbXaP可以得到X落入区间],(ba的概率。也就是说,分布函数完整地描述了随机变量X随机取值的统计规律性。分布函数)(xF是一个普通的函数,它表示随机变量落入区间(–∞,x]内的概率。)(xF的图形是阶梯图形,,,21xx是第一类间断点,随机变量X在kx处的概率就是)(xF在kx处的跃度。分布函数具有如下性质:1°,1)(0xFx;2°)(xF是单调不减的函数,即21xx时,有)(1xF)(2xF;3°0)(lim)(xFFx,1)(lim)(xFFx;4°)()0(xFxF,即)(xF是右连续的;5°)0()()(xFxFxXP。(3)连续型随机变量的密度函数定义设)(xF是随机变量X的分布函数,若存在非负函数)(xf,对任意实数x,有xdxxfxF)()(,则称X为连续型随机变量。)(xf称为X的概率密度函数或密度函数,简称概率密度。)(xf的图形是一条曲线,称为密度(分布)曲线。由上式可知,连续型随机变量的分布函数)(xF是连续函数。所以,)()()()()()(1221212121xFxFxXxPxXxPxXxPxXxP密度函数具有下面4个性质:1°0)(xf。2°1)(dxxf。1)()(dxxfF的几何意义;在横轴上面、密度曲线下面的全部面积等于1。如果一个函数)(xf满足1°、2°,则它一定是某个随机变量的密度函数。3°)(21xXxP=)()(12xFxF=21)(xxdxxf。4°若)(xf在x处连续,则有)()(xfxF。dxxfdxxXxP)()(它在连续型随机变量理论中所起的作用与kkpxXP)(在离散型随机变量理论中所起的作用相类似。)(),(,独立性古典概型,五大公式,APAE)()()()(xXPxFxXX对于连续型随机变量X,虽然有0)(xXP,但事件)(xX并非是不可能事件Ø。hxxdxxfhxXxPxXP)()()(令0h,则右端为零,而概率0)(xXP,故得0)(xXP。不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。2、常见分布①0-1分布P(X=1)=p,P(X=0)=q②二项分布在n重贝努里试验中,设事件A发生的概率为p。事件A发生的次数是随机变量,设为X,则X可能取值为n,,2,1,0。knkknnqpkPkXPC)()(,其中nkppq,,2,1,0,10,1,则称随机变量X服从参数为n,p的二项分布。记为),(~pnBX。nknkknnnnnpqpqpnpqqkXPXCC,,,,,,|)(2221容易验证,满足离散型分布率的条件。当1n时,kkqpkXP1)(,1.0k,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。③泊松分布设随机变量X的分布律为ekkXPk!)(,0,2,1,0k,则称随机变量X服从参数为的泊松分布,记为)(~X或者P()。泊松分布为二项分布的极限分布(np=λ,n→∞)。如飞机被击中的子弹数、来到公共汽车站的乘客数、机床发生故障的次数、自动控制系统中元件损坏的个数、某商店中来到的顾客人数等,均近似地服从泊松分布。④超几何分布),min(,2,1,0,)(nMllkCCCkXPnNknMNkM随机变量X服从参数为n,N,M的超几何分布。⑤几何分布,3,2,1,)(1kpqkXPk,其中p≥
本文标题:概率统计资料
链接地址:https://www.777doc.com/doc-4579496 .html