经典数列求和公式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

新梦想教育1数列求和的基本方法和技巧利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:dnnnaaanSnn2)1(2)(112、等比数列求和公式:)1(11)1()1(111qqqaaqqaqnaSnnn3、)1(211nnkSnkn自然数列4、)12)(1(6112nnnkSnkn自然数平方组成的数列[例1]已知3log1log23x,求nxxxx32的前n项和.解:由212loglog3log1log3323xxx由等比数列求和公式得nnxxxxS32(利用常用公式)=xxxn1)1(=211)211(21n=1-n21[例2]设Sn=1+2+3+…+n,n∈N*,求1)32()(nnSnSnf的最大值.解:由等差数列求和公式得)1(21nnSn,)2)(1(21nnSn(利用常用公式)∴1)32()(nnSnSnf=64342nnn=nn64341=50)8(12nn501∴当88n,即n=8时,501)(maxnf新梦想教育2二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.[例3]求和:132)12(7531nnxnxxxS………………………①解:由题可知,{1)12(nxn}的通项是等差数列{2n-1}的通项与等比数列{1nx}的通项之积设nnxnxxxxxS)12(7531432……………………….②(设制错位)①-②得nnnxnxxxxxSx)12(222221)1(1432(错位相减)再利用等比数列的求和公式得:nnnxnxxxSx)12(1121)1(1∴21)1()1()12()12(xxxnxnSnnn[例4]求数列,22,,26,24,2232nn前n项的和.解:由题可知,{nn22}的通项是等差数列{2n}的通项与等比数列{n21}的通项之积设nnnS2226242232…………………………………①14322226242221nnnS………………………………②(设制错位)①-②得1432222222222222)211(nnnnS(错位相减)1122212nnn∴1224nnnS练习:*提示:不要觉得重复和无聊,乘公比错位相减的关键就是熟练!通项为{an·bn},1、an是自然数列,bn是首项为1,q为2的等比数列2、an是正偶数数列,bn是首项为1,q为2的等比数列3、an是正奇数数列,bn是首项为1,q为2的等比数列4、an是正偶数数列,bn是首项为3,q为3的等比数列5、an是正奇数数列,bn是首项为3,q为3的等比数列6、an是自然数列,bn是首项为3,q为3的等比数列新梦想教育3三、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例5]求数列的前n项和:231,,71,41,1112naaan,…解:设)231()71()41()11(12naaaSnn将其每一项拆开再重新组合得)23741()1111(12naaaSnn(分组)当a=1时,2)13(nnnSn=2)13(nn(分组求和)当1a时,2)13(1111nnaaSnn=2)13(11nnaaan[例6]求数列{n(n+1)(2n+1)}的前n项和.解:设kkkkkkak2332)12)(1(∴nknkkkS1)12)(1(=)32(231kkknk将其每一项拆开再重新组合得Sn=kkknknknk1213132(分组)=)21()21(3)21(2222333nnn=2)1(2)12)(1(2)1(22nnnnnnn(分组求和)=2)2()1(2nnn新梦想教育4四、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(nfnfan(2)111)1(1nnnnan====》升级分母是n(n+2)呢?---重点掌握这个型[例7]求数列,11,,321,211nn的前n项和.解:设nnnnan111(裂项)则11321211nnSn(裂项求和)=)1()23()12(nn=11n[例8]在数列{an}中,11211nnnnan,又12nnnaab,求数列{bn}的前n项的和.解:∵211211nnnnnan∴)111(82122nnnnbn(裂项)∴数列{bn}的前n项和)]111()4131()3121()211[(8nnSn(裂项求和)=)111(8n=18nn

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功