等比数列性质及其应用知识点总结与典型例题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

..等比数列知识点总结与典型例题1、等比数列的定义:*12,nnaqqnnNa0且,q称为公比2、通项公式:11110,0nnnnaaaqqABaqABq,首项:1a;公比:q推广:nmnmnnnmnmmmaaaaqqqaa3、等比中项:(1)如果,,aAb成等比数列,那么A叫做a与b的等差中项,即:2Aab或Aab注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列na是等比数列211nnnaaa4、等比数列的前n项和nS公式:(1)当1q时,1nSna(2)当1q时,11111nnnaqaaqSqq11''11nnnaaqAABABAqq(,,','ABAB为常数)5、等比数列的判定方法:(1)用定义:对任意的n,都有11(0){}nnnnnnaaqaqqaaa或为常数,为等比数列(2)等比中项:21111(0){}nnnnnnaaaaaa为等比数列(3)通项公式:0{}nnnaABABa为等比数列6、等比数列的证明方法:依据定义:若*12,nnaqqnnNa0且或1{}nnnaqaa为等比数列7、等比数列的性质:(2)对任何*,mnN,在等比数列{}na中,有nmnmaaq。(3)若*(,,,)mnstmnstN,则nmstaaaa。特别的,当2mnk时,得2nmkaaa注:12132nnnaaaaaa等差和等比数列比较:等差数列等比数列..经典例题透析类型一:等比数列的通项公式例1.等比数列{}na中,1964aa,3720aa,求11a.思路点拨:由等比数列的通项公式,通过已知条件可列出关于1a和q的二元方程组,解出1a和q,可得11a;或注意到下标1937,可以利用性质可求出3a、7a,再求11a.解析:法一:设此数列公比为q,则8191126371164(1)20(2)aaaaqaaaqaq由(2)得:241(1)20aqq..........(3)∴10a.由(1)得:421()64aq,∴418aq......(4)(3)÷(4)得:42120582qq,∴422520qq,解得22q或212q当22q时,12a,1011164aaq;当212q时,132a,101111aaq.定义daann1)0(1qqaann递推公式daann1;mdaanmnqaann1;mnmnqaa通项公式dnaan)1(111nnqaa(0,1qa)中项2knknaaA(0,,*knNkn))0(knknknknaaaaG(0,,*knNkn)前n项和)(21nnaanSdnnnaSn2)1(1)2(111)1(111qqqaaqqaqnaSnnn重要性质),,,,(*qpnmNqpnmaaaaqpnm),,,,(*qpnmNqpnmaaaaqpnm..法二:∵193764aaaa,又3720aa,∴3a、7a为方程220640xx的两实数根,∴41673aa或16473aa∵23117aaa,∴271131aaa或1164a.总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{an}为等比数列,a1=3,a9=768,求a6。【答案】±96法一:设公比为q,则768=a1q8,q8=256,∴q=±2,∴a6=±96;法二:a52=a1a9a5=±48q=±2,∴a6=±96。【变式2】{an}为等比数列,an>0,且a1a89=16,求a44a45a46的值。【答案】64;∵21894516aaa,又an>0,∴a45=4∴34445464564aaaa。【变式3】已知等比数列{}na,若1237aaa,1238aaa,求na。【答案】12nna或32nna;法一:∵2132aaa,∴312328aaaa,∴22a从而13135,4aaaa解之得11a,34a或14a,31a当11a时,2q;当14a时,12q。故12nna或32nna。法二:由等比数列的定义知21aaq,231aaq代入已知得2111211178aaqaqaaqaq21331(1)7,8aqqaq211(1)7,(1)2(2)aqqaq..将12aq代入(1)得22520qq,解得2q或12q由(2)得112aq或1412aq,以下同方法一。类型二:等比数列的前n项和公式例2.设等比数列{an}的前n项和为Sn,若S3+S6=2S9,求数列的公比q.解析:若q=1,则有S3=3a1,S6=6a1,S9=9a1.因a1≠0,得S3+S6≠2S9,显然q=1与题设矛盾,故q≠1.由3692SSS得,369111(1)(1)2(1)111aqaqaqqqq,整理得q3(2q6-q3-1)=0,由q≠0,得2q6-q3-1=0,从而(2q3+1)(q3-1)=0,因q3≠1,故312q,所以342q。举一反三:【变式1】求等比数列111,,,39的前6项和。【答案】364243;∵11a,13q,6n∴666111331364112324313S。【变式2】已知:{an}为等比数列,a1a2a3=27,S3=13,求S5.【答案】1211219或;∵322273aa,31(1)113313aqqqq或,则a1=1或a1=9∴5555191131213121S113913S-或==-...【变式3】在等比数列{}na中,166naa,21128naa,126nS,求n和q。【答案】12q或2,6n;∵211nnaaaa,∴1128naa解方程组1112866nnaaaa,得1642naa或1264naa①将1642naa代入11nnaaqSq,得12q,由11nnaaq,解得6n;②将1264naa代入11nnaaqSq,得2q,由11nnaaq,解得6n。∴12q或2,6n。类型三:等比数列的性质例3.等比数列{}na中,若569aa,求3132310loglog...logaaa.解析:∵{}na是等比数列,∴110293847569aaaaaaaaaa∴1032313logloglogaaa553123103563log()log()log910aaaaaa举一反三:【变式1】正项等比数列{}na中,若a1·a100=100;则lga1+lga2+……+lga100=_____________.【答案】100;∵lga1+lga2+lga3+……+lga100=lg(a1·a2·a3·……·a100)而a1·a100=a2·a99=a3·a98=……=a50·a51∴原式=lg(a1·a100)50=50lg(a1·a100)=50×lg100=100。【变式2】在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________。【答案】216;法一:设这个等比数列为{}na,其公比为q,∵183a,445127823aaqq,∴48116q,294q..∴23362341111aaaaqaqaqaq33389621634。法二:设这个等比数列为{}na,公比为q,则183a,5272a,加入的三项分别为2a,3a,4a,由题意1a,3a,5a也成等比数列,∴238273632a,故36a,∴23234333216aaaaaa。类型四:等比数列前n项和公式的性质例4.在等比数列{}na中,已知48nS,260nS,求3nS。思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前k项和,第2个k项和,第3个k项和,……,第n个k项和仍然成等比数列。解析:法一:令b1=Sn=48,b2=S2n-Sn=60-48=12,b3=S3n-S2n观察b1=a1+a2+……+an,b2=an+1+an+2+……+a2n=qn(a1+a2+……+an),b3=a2n+1+a2n+2+……+a3n=q2n(a1+a2+……+an)易知b1,b2,b3成等比数列,∴2223112348bbb,∴S3n=b3+S2n=3+60=63.法二:∵22nnSS,∴1q,由已知得121(1)481(1)601nnaqqaqq①②②÷①得514nq,即14nq③③代入①得1641aq,∴3133(1)164(1)6314nnaqSq。法三:∵{}na为等比数列,∴nS,2nnSS,32nnSS也成等比数列,∴2232()()nnnnnSSSSS,..∴22232()(6048)606348nnnnnSSSSS。举一反三:【变式1】等比数列{}na中,公比q=2,S4=1,则S8=___________.【答案】17;S8=S4+a5+a6+a7+a8=S4+a1q4+a2q4+a3q4+a4q4=S4+q4(a1+a2+a3+a4)=S4+q4S4=S4(1+q4)=1×(1+24)=17【变式2】已知等比数列{}na的前n项和为Sn,且S10=10,S20=40,求:S30=?【答案】130;法一:S10,S20-S10,S30-S20构成等比数列,∴(S20-S10)2=S10·(S30-S20)即302=10(S30-40),∴S30=130.法二:∵2S10≠S20,∴1q,∵101)1(10110qqaS,20120(1)401aqSq,∴102011,14qq∴103q,∴511qa∴130)31)(5(1)1(330130qqaS.【变式3】等比数列{}na的项都是正数,若Sn=80,S2n=6560,前n项中最大的一项为54,求n.【答案】∵6560802nnSS,∴1q(否则212nnSS)∴1(1)1nnaqSq=80........(1)212(1)1nnaqSq=6560.........(2),(2)÷(1)得:1+qn=82,∴qn=81......(3)∵该数列各项为正数,∴由(3)知q1∴{an}为递增数列,∴an为最大项54.∴an=a1qn-1=54,∴a1qn=54q,∴81a1=54q..........(4)∴1542813aqq代入(1)得2(181)80(1)3qq,∴q=3,∴n=4...【变式4】等比数列{}na中,若a1+a2=324,a3+a4=36,则a5+a6=_____________.【答案】4;令b1=a1+a2=a1(1+q),b2=a3+a4=a1q2(1+q),b3=a5+a6=a1q4(1+q),易知:b1,b2,b3成等比数列,∴b3=122bb=324362=4,即a5+a6=4.

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功