2018年普通高等学校招生全国统一考试-数学(浙江卷)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2018年普通高等学校招生全国统一考试数学(浙江卷)本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分.考试用时120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.参考公式:若事件A,B互斥,则柱体的体积公式V=Sh若事件A,B相互独立,则其中S表示棱柱的底面面积,h表示棱柱的高锥体的体积公式若事件A在一次试验中发生的概率是p,则n次13VSh独立重复试验中事件A恰好发生k次的概率其中S表示棱锥的底面面积,h表示棱锥的高球的表面积公式台体的体积公式24SR1()3aabbVhSSSS球的体积公式其中Sa,Sb分别表示台体的上、下底面积343VRh表示台体的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},则【C】A.B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.双曲线的焦点坐标是【B】A.(−,0),(,0)B.(−2,0),(2,0)C.(0,−),(0,)D.(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是【C】A.2B.4C.6D.8侧视图俯视图正视图22114.复数(i为虚数单位)的共轭复数是【B】A.1+iB.1−iC.−1+iD.−1−i5.函数y=sin2x的图象可能是【D】A.B.C.D.6.已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的【A】A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.设0p1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时【D】A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则【D】A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.已知a,b,e是平面向量,e是单位向量,若非零向量a与e的夹角为3π,向量b满足b2−4e•b+3=0,则|a−b|的最小值是【A】A.13B.13C.2D.3210.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a11,则【B】A.a1a3,a2a4B.a1a3,a2a4C.a1a3,a2a4D.a1a3,a2a4非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则100,153100,3xyzxyz当81z时,x=8,y=11.12.若,xy满足约束条件0,26,2,xyxyxy则3zxy的最小值是-2,最大值是8.13.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,A=60°,则sinB=_______721,c=8.14.二项式831()2xx的展开式的常数项是715.已知λ∈R,函数f(x)=24,43,xxxxx错误!未找到引用源。,当λ=2时,不等式f(x)0的解集是(1,4),若函数f(x)恰有2个零点,则λ的取值范围是(1,3)∪(1,+).16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260个没有重复数字的四位数(用数字作答)17.已知点P(0,1),椭圆24x+y2=m(m1)上两点A,B满足AP=2PB,则当m=5时,点B横坐标的绝对值最大.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.[来源:学18.(本题满分14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(3455,-).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=513,求cosβ的值.解:(Ⅰ)由角的终边过点34(,)55P得4sin5,所以4sin(π)sin5.(Ⅱ)由角的终边过点34(,)55P得3cos5,由5sin()13得12cos()13.由()得coscos()cossin()sin,所以56cos65或16cos65.19.(本题满分15分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.解:方法一:(Ⅰ)由11112,4,2,,ABAABBAAABBBAB得11122ABAB,所以2221111ABABAA.故111ABAB.由2BC,112,1,BBCC11,BBBCCCBC得115BC,由2,120ABBCABC得23AC,由1CCAC,得113AC,所以2221111ABBCAC,故111ABBC.因此1AB平面111ABC.(Ⅱ)如图,过点1C作111CDAB,交直线11AB于点D,连结AD.由1AB平面111ABC得平面111ABC平面1ABB,由111CDAB得1CD平面1ABB,所以1CAD是1AC与平面1ABB所成的角.由1111115,22,21BCABAC得11111161cos,sin77CABCAB,所以13CD,故11139sin13CDCADAC.因此,直线1AC与平面1ABB所成的角的正弦值是3913.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:111(0,3,0),(1,0,0),(0,3,4),(1,0,2),(0,3,1),ABABC因此11111(1,3,2),(1,3,2),(0,23,3),ABABACuuuruuuuruuuur[由1110ABABuuuruuuur得111ABAB.由1110ABACuuuruuuur得111ABAC.所以1AB平面111ABC.(Ⅱ)设直线1AC与平面1ABB所成的角为.由(Ⅰ)可知11(0,23,1),(1,3,0),(0,0,2),ACABBBuuuruuuruuur设平面1ABB的法向量(,,)xyzn.由10,0,ABBBuuuruuurnn即30,20,xyz可取(3,1,0)n.所以111|39sin|cos,|13|||ACACACuuuruuuruuurn|nn|.因此,直线1AC与平面1ABB所成的角的正弦值是3913.20.(本题满分15分)已知等比数列{an}的公比q1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{bn}的通项公式.解:(Ⅰ)由42a是35,aa的等差中项得35424aaa,所以34543428aaaa,解得48a.由3520aa得18()20qq,因为1q,所以2q.[(Ⅱ)设1()nnnncbba,数列{}nc前n项和为nS.由11,1,,2.nnnSncSSn解得41ncn.由(Ⅰ)可知12nna,所以111(41)()2nnnbbn,故211(45)(),22nnnbbnn,11123221()()()()nnnnnbbbbbbbbbb23111(45)()(49)()73222nnnn.设221113711()(45)(),2222nnTnn,2211111137()(49)()(45)()22222nnnTnn所以22111111344()4()(45)()22222nnnTn,因此2114(43)(),22nnTnn,又11b,所以2115(43)()2nnbn.21.(本题满分15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.PMBAOyx(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+24y=1(x0)上的动点,求△PAB面积的取值范围.解:(Ⅰ)设00(,)Pxy,2111(,)4Ayy,2221(,)4Byy.因为PA,PB的中点在抛物线上,所以1y,2y为方程202014()422yxyy即22000280yyyxy的两个不同的实数根.所以1202yyy.因此,PM垂直于y轴.(Ⅱ)由(Ⅰ)可知120212002,8,yyyyyxy所以2221200013||()384PMyyxyx,21200||22(4)yyyx.因此,PAB△的面积3221200132||||(4)24PABSPMyyyx△.因为220001(0)4yxx,所以2200004444[4,5]yxxx.因此,PAB△面积的取值范围是1510[62,]4.22.(本题满分15分)已知函数f(x)=x−lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)8−8ln2;(Ⅱ)若a≤3−4ln2,证明:对于任意k0,直线y=kx+a与曲线y=f(x)有唯一公共点.解:(Ⅰ)函数f(x)的导函数11()2fxxx,由12()()fxfx得1212111122xxxx,因为12xx,所以121112xx.由基本不等式得4121212122xxxxxx.因为12xx,所以12256xx.由题意得12112212121()()lnlnln()2fxfxxxxxxxxx.设1()ln2gxxx,则1()(4)4gxxx,所以x(0,16)16(16,+∞)()gx−0+()gx2−4ln2所以g(x)在[256,+∞)上单调递增,故12()(256)88ln2gxxg,即12()()88ln2fxfx.(Ⅱ)令m=()eak,n=21()1ak,则f(m)–km–a|a|+k–k–a≥0,f(n)–kn–a1()anknn≤||1()ankn0,所以,存在x0∈(m,n)使f(x0)=kx0+a,所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a得lnxxakx.设h(x)=lnxxax,则h′(x)=22ln1()12xxagxaxx,其中g(x)=ln2xx.由(Ⅰ)可知g(x)≥g(16),又a≤3–4ln2,故–g(x)–1+a≤–g(16)–1+a=–3+4ln2+a≤0,所以

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功