高二数列专题训练

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1高二数学期末复习(理科)数列2017.06一、选择题1.若数列{an}是等差数列,且a3+a7=4,则数列{an}的前9项和S9=()A.272B.18C.27D.362.若数列{an}满足:a1=19,an+1=an-3(n∈N*),则数列{an}的前n项和的值最大时,n的值为()A.6B.7C.8D.93.已知等差数列{an}的前n项和为Sn,并且S100,S110,若Sn≤Sk对n∈N*恒成立,则正整数k的值为()A.5B.6C.4D.74.数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*).若b3=-2,b10=12,则a8=()A.0B.3C.8D.115.在等比数列{an}中,a3=7,前3项之和S3=21,则公比q的值为()A.1B.-12C.1或-12D.-1或126.已知等比数列{an}满足a1=2,a3a5=4a26,则a3的值为()A.12B.1C.2D.147.设数列{an}满足:2an=an+1(an≠0)(n∈N*),且前n项和为Sn,则S4a2的值为()A.152B.154C.4D.28.已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于()A.16B.8C.4D.不确定9.已知等比数列{an}的首项为1,若4a1,2a2,a3成等差数列,则数列{1an}的前5项和为()2A.3116B.2C.3316D.163310.已知数列{an}满足a1=5,anan+1=2n,则a7a3=()A.2B.4C.5D.5211.已知函数f(n)=n2(当n为奇数时),-n2(当n为偶数时),且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.1020012.已知方程(x2-mx+2)(x2-nx+2)=0的四个根组成以12为首项的等比数列,则mn=()A.32B.32或23C.23D.以上都不对二、填空题13.已知递增的等差数列{an}满足a1=1,a3=a22-4,则an=________.14.已知数列{an}为等差数列,Sn为其前n项和,a7-a5=4,a11=21,Sk=9,则k=________.15.已知各项不为0的等差数列{an},满足2a3-a27+2a11=0,数列{bn}是等比数列,且b7=a7,则b6b8=________.16.设数列{an}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|_______.三、解答题17.设数列na的前n项和为nS.已知11a,131nnaS,nN.(Ⅰ)求数列n{}a的通项公式;(Ⅱ)求数列nn{}a的前n项和nT.18.已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和Sn.3(1)求an及Sn;(2)令bn=na211(n∈N*),求数列{bn}的前n项和Tn.19.已知数列}{na满足2,34,3,1*1121nNnaaaaannn,(1)证明:数列}{1nnaa是等比数列,并求出}{na的通项公式(2)设数列}{nb的前n项和为nS,且对任意*Nn,有1222211nnabababnn成立,求nS20.已知数列{an}的前n项和nnSnN11()2.()2na,数列{bn}满足4bn=2n·an.(1)求证数列{bn}是等差数列,并求数列{an}的通项公式;(2)设n2lognnca,数列2cncn+2的前n项和为Tn,求满足Tn<2521(n∈N*)的n的最大值.高二数学期末复习(理科)数列答案2017.0651.B[S9=9(a1+a9)2=9(a3+a7)2=9×42=18.]2.B[∵an+1-an=-3,∴数列{an}是以19为首项,-3为公差的等差数列,∴an=19+(n-1)×(-3)=22-3n.设前k项和最大,则有ak≥0,ak+1≤0,∴22-3k≥0,22-3(k+1)≤0.∴193≤k≤223.∵k∈N*,∴k=7.故满足条件的n的值为7.]3.A[由S100,S110知a10,d0,并且a1+a110,即a60,又a5+a60,所以a50,即数列的前5项都为正数,第5项之后的都为负数,所以S5最大,则k=5.]4.B[因为{bn}是等差数列,且b3=-2,b10=12,故公差d=12-(-2)10-3=2.于是b1=-6,且bn=2n-8(n∈N*),即an+1-an=2n-8.所以a8=a7+6=a6+4+6=a5+2+4+6=…=a1+(-6)+(-4)+(-2)+0+2+4+6=3.]5.C[根据已知条件得a1q2=7,a1+a1q+a1q2=21,∴1+q+q2q2=3.整理得2q2-q-1=0,解得q=1或q=-12.]6.B[∵{an}为等比数列,设公比为q,由a3·a5=4a26可得:a24=4a26,∴a26a24=14,即q4=14.∴q2=12,a3=a1·q2=1.]7.A[由题意知,数列{an}是以2为公比的等比数列.故S4a2=a1(1-24)1-2a1×2=152.]8.B[由数列{an}的前n项和Sn=an2+bn(a、b∈R),可知数列{an}是等差数列,由S25=(a1+a25)×252=100,解得a1+a25=8,所以a1+a25=a12+a14=8.]9.A[设数列{an}的公比为q,则有4+q2=2×2q,解得q=2,所以an=2n-1.1an=12n-1,所以S5=1-(12)51-12=3116.故选A.]10.B[依题意得,an+1an+2anan+1=2n+12n=2,即an+2an=2,数列a1,a3,a5,a7,…6是一个以5为首项,以2为公比的等比数列,因此a7a3=4,选B.]11..B[由题意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.]12.B[设a,b,c,d是方程(x2-mx+2)(x2-nx+2)=0的四个根,不妨设acdb,则a·b=c·d=2,a=12,故b=4,根据等比数列的性质,得到c=1,d=2,则m=a+b=92,n=c+d=3,或m=c+d=3,n=a+b=92,则mn=32或mn=23.]13.解析设等差数列公差为d,∵由a3=a22-4,得1+2d=(1+d)2-4,解得d2=4,即d=±2.由于该数列为递增数列,故d=2.∴an=1+(n-1)×2=2n-1.答案2n-114.解析a7-a5=2d=4,则d=2.a1=a11-10d=21-20=1,Sk=k+k(k-1)2×2=k2=9.又k∈N*,故k=3.15.解析由题意可知,b6b8=b27=a27=2(a3+a11)=4a7,∵a7≠0,∴a7=4,∴b6b8=16.答案1616.解析由数列{an}首项为1,公比q=-2,则an=(-2)n-1,a1=1,a2=-2,a3=4,a4=-8,则a1+|a2|+a3+|a4|=1+2+4+8=15.答案1517.(1)由题意,131nnaS,则当2n时,131nnaS.两式相减,得14nnaa(2n).又因为11a,24a,214aa,所以数列na是以首项为1,公比为4的等比数列所以数列na的通项公式是14nna(nN).(2)∵2112323124344nnnTaaanan,∴2314412434(1)44nnnTnn,两式相减得,2114314444414nnnnnTnn,7整理得,311499nnnT(nN).18.(1)设等差数列{an}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2.∴an=3+2(n﹣1)=2n+1.∴数列{an}的前n项和Sn==n2+2n.(2)bn===,∴数列{bn}的前n项和Tn=++…+==.19.解:(1)由1134nnnaaa可得2),(31211aaaaaannnn,}{1nnaa是以2为首项,3为公比的等比数列112211)()()(aaaaaaaannnnn113131)31(2nn(2)1n时,3,3,31111Sbab2n时,1322,2)12(12nnnnnnnabnnnab12323323223nnnS1)3333231(21210nn设12103333231nnx则nnnnx33)1(333231313212133)333(32021nnnnnnnx823321nnnS20.(1)证明:在Sn=-an-12n-1+2中,令n=1,可得S1=-a1-1+2=a1,得a1=12.当n≥2时,Sn-1=-an-1-12n-2+2,∴an=Sn-Sn-1=-an+an-1+12n-1,即2an=an-1+12n-1.∴2n·an=2n-1·an-1+1.∵bn=2n·an,∴bn=bn-1+1.又b1=2a1=1,∴{bn}是以1为首项,1为公差的等差数列.于是bn=1+(n-1)·1=n,∴an=n2n.(2)∵cn=log2nan=log22n=n,∴2cncn+2=2n(n+2)=1n-1n+2.∴Tn=1-13+12-14+…+1n-1n+2=1+12-1n+1-1n+2.由Tn<2521,得1+12-1n+1-1n+2<2521,即1n+1+1n+2>1342,f(n)=1n+1+1n+2单调递减,∵f(3)=920,f(4)=1130,f(5)=1342,∴n的最大值为4.

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功