板块命题点专练(二)函数及其图象和性质命题点一函数的概念及其表示1.(2018·江苏高考)函数f(x)=log2x-1的定义域为________.解析:由log2x-1≥0,即log2x≥log22,解得x≥2,所以函数f(x)=log2x-1的定义域为{x|x≥2}.答案:{x|x≥2}2.(2016·江苏高考)函数y=3-2x-x2的定义域是________.解析:要使函数有意义,需3-2x-x2≥0,即x2+2x-3≤0,得(x-1)(x+3)≤0,即-3≤x≤1,故所求函数的定义域为[-3,1].答案:[-3,1]3.(2016·浙江高考)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)-f(a)=(x-b)(x-a)2,x∈R,则实数a=____,b=________.解析:因为f(x)=x3+3x2+1,所以f(a)=a3+3a2+1,所以f(x)-f(a)=(x-b)(x-a)2=(x-b)(x2-2ax+a2)=x3-(2a+b)x2+(a2+2ab)x-a2b=x3+3x2-a3-3a2.由此可得2a+b=-3,①a2+2ab=0,②a3+3a2=a2b.③因为a≠0,所以由②得a=-2b,代入①式得b=1,a=-2.答案:-214.(2018·全国卷Ⅰ改编)设函数f(x)=2-x,x≤0,1,x>0,则满足f(x+1)<f(2x)的x的取值范围是________.解析:法一:①当x+1≤0,2x≤0,即x≤-1时,f(x+1)<f(2x),即为2-(x+1)<2-2x,即-(x+1)<-2x,解得x<1.因此不等式的解集为(-∞,-1].②当x+1≤0,2x>0时,不等式组无解.③当x+1>0,2x≤0,即-1<x≤0时,f(x+1)<f(2x),即为1<2-2x,解得x<0.因此不等式的解集为(-1,0).④当x+1>0,2x>0,即x>0时,f(x+1)=1,f(2x)=1,不合题意.综上,不等式f(x+1)<f(2x)的解集为(-∞,0).法二:∵f(x)=2-x,x≤0,1,x>0,∴函数f(x)的图象如图所示.结合图象知,要使f(x+1)<f(2x),则需x+1<0,2x<0,2x<x+1或x+1≥0,2x<0,∴x<0.答案:(-∞,0)命题点二函数的基本性质1.(2016·江苏高考)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=x+a,-1≤x<0,25-x,0≤x<1,其中a∈R.若f-52=f92,则f(5a)的值是________.解析:因为函数f(x)的周期为2,结合在[-1,1)上f(x)的解析式,得f-52=f-2-12=f-12=-12+a,f92=f4+12=f12=25-12=110.由f-52=f92,得-12+a=110,解得a=35.所以f(5a)=f(3)=f(4-1)=f(-1)=-1+35=-25.答案:-252.(2013·江苏高考)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.解析:由于f(x)为R上的奇函数,所以当x=0时,f(0)=0;当x<0时,-x>0,所以f(-x)=x2+4x=-f(x),即f(x)=-x2-4x,所以f(x)=x2-4x,x>0,0,x=0,-x2-4x,x<0.由f(x)>x,可得x2-4x>x,x>0或-x2-4x>x,x<0,解得x>5或-5<x<0,所以原不等式的解集为(-5,0)∪(5,+∞).答案:(-5,0)∪(5,+∞)3.(2018·全国卷Ⅱ改编)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=________.解析:法一:∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).由f(1-x)=f(1+x),得-f(x-1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数得f(0)=0.又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.法二:由题意可设f(x)=2sinπ2x,作出f(x)的部分图象如图所示.由图可知,f(x)的一个周期为4,∴f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=12×0+f(1)+f(2)=2.答案:24.(2017·全国卷Ⅱ改编)函数f(x)=ln(x2-2x-8)的单调递增区间是________.解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:(4,+∞)5.(2017·全国卷Ⅱ)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=________.解析:由已知得,f(-2)=2×(-2)3+(-2)2=-12,又函数f(x)是奇函数,所以f(2)=-f(-2)=12.答案:126.(2017·山东高考)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.解析:因为f(x+4)=f(x-2),所以f(x+6)=f(x),所以f(x)的周期为6,因为919=153×6+1,所以f(919)=f(1).又f(x)为偶函数,所以f(919)=f(1)=f(-1)=6.答案:6命题点三函数的图象1.(2016·全国卷Ⅱ改编)已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=x+1x与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则i=1m(xi+yi)=________.解析:因为f(-x)=2-f(x),所以f(-x)+f(x)=2.因为-x+x2=0,f-x+fx2=1,所以函数y=f(x)的图象关于点(0,1)对称.函数y=x+1x=1+1x,故其图象也关于点(0,1)对称.所以函数y=x+1x与y=f(x)图象的交点(x1,y1),(x2,y2),…,(xm,ym)成对出现,且每一对均关于点(0,1)对称,所以i=1mxi=0,i=1myi=2×m2=m,所以i=1m(xi+yi)=m.答案:m2.(2015·全国卷Ⅱ)已知函数f(x)=ax3-2x的图象过点(-1,4),则a=________.解析:因为f(x)=ax3-2x的图象过点(-1,4),所以4=a×(-1)3-2×(-1),解得a=-2.答案:-2