五年级思维训练

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

五年级思维训练2018暑期班教学目标:1、理解平均数的概念。2、灵活运用平均数的数量关系解决一些稍微复杂的问题。3、通过自己探索,激发学习兴趣。重点:理解平均数的概念。难点:灵活运用平均数的数量关系解决一些稍微复杂的问题。把几个不相等的数,在总数不变的条件下,通过补多补少,使他们完全相等,求得数就是平均数。下面数量关系必须牢记:例题一、有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个。苹果核桃平均每箱37个。求一箱苹果多少个?一箱桃多少个?思路导航(1)、1箱苹果+1箱梨+1箱橘子=42×3=126(个)(2)、1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)、1箱苹果+1箱桃=37×2=74(个)随堂练习1、一次考试,甲、乙、丙三人的平均分是91分,乙、丙、丁的平均分是89分,甲、丁二人的平均分是95分,问甲、丁各多少分?2、甲、乙、病、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。求四人的平均体重是多少千克?3、甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植树19棵,三个小组各植树多少棵?例题二、一次数学测验,全班的平均分是91.2,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班男生有多少人?【思路导航】女生每人比全班的平均分高92—91.2=0.8(分),而男生每人比全班平均分低91.2—90.5=0.7(分)。全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。解(92—91.2)×21=16.8(分)16.8÷(91.2—90.5)=24(人)答:全班有男生24人。随堂练习第二讲平均数(二)教学目标:解答平均数应用题的关键是要找准问题与条件,条件与条件之间相对应的关系。通过变形、综合后的平均数应用题,数量关系比较复杂,也比较隐蔽。只要同学们始终记住,平均数是由“总数量”除以与“总数量”相对应的“总份数”而得到的这一关系,采用作图法、假设等方法,开动脑筋、认真审题,就能找到正确的解题方法。例题一:小芳与四名同学一起参加一次数学竞赛,那四位同学的成绩分别为78分、91分、82分、79分,小芳的成绩比五人的平均成绩高6分。求小芳的数学成绩。随堂练习1、学会借助线段、示意图、直观演示手段帮助分析题目。2、学会从条件出发,逐步推出所求问题或者从问题出发,找出必须的两个条件。3、通过自己探索,激发学习兴趣。重点:学会借助线段、示意图、直观演示手段帮助分析题目。难点:学会从条件出发,逐步推出所求问题或者从问题出发,找出必须的两个条件。【思路导航】甲工作了40天,而乙停止了15天没有加工,乙只加工了25天,他加工的零件正好是甲的一半,也就是甲20天加工的零件和乙25天加工的零件同样多。由于甲每天比乙多加工6个,20天一共多加工20×6=120(个)。这120个相当于乙25—20=5(天)加工的个数,乙每天加工120÷(25—20)=24(个)。乙一共加工了24×25=600(个),甲一共加工了600×2=1200(个)解6×(40÷2)÷(25—40÷2)=24(个)24×25=600(个)600×2=1200(个)答:这时,甲加工了1200个,乙加工了600个。解6×(40÷2)÷(25—40÷2)=24(个)24×25=600(个)600×2=1200(个)答:这时,甲加工了1200个,乙加工了600个。随堂练习1、甲、乙二人加工一批帽子,甲每天比乙多加工10个。途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍,这时两人各加工了多少个?2、甲、乙两车同时从A、B两地相对开出,甲车每小时比乙车多行20千米。途中乙车因修车用了2个小时,6小时后甲车到达两地的中点,而乙车才行驶了甲车所行路程的一半。问:A、B两地相距多少千米?3、甲、乙两人承包一项工程,共得工资1120元,已知甲工作了10天,乙工作了12天,且甲5天的工资和乙4天的工资一样多。求甲、乙每天各得工资多少元?例题二:服装厂要加工一批上衣,原计划20天完成任务。实际每天比计划多加工60件,找这样做了15天,就超过原计划件数350件。原计划加工上衣多少件?【思路导航】解(60×15—350)÷(20—15)=110(件)110×20=2200(件)答:原计划加工上衣2200件。随堂练习1、用汽车运一堆煤,原计划8小时运完。实际每小时比原计划多运1.5吨,这样运了6小时比原计划多运了3吨,原计划8小时运多少吨煤?2、汽车从甲地开往乙地,原计划10小时到达。实际每小时比原计划多行15千米,行驶了8小时候后,发现已超过乙地20千米。甲、乙两地相距多少千米?3、小明看一本书,原计划8天看完,实际每天比原计划少看了4页,这样,用10天看完了这本书。这本书一共有多少页?4、王师傅原计划每天做60个零件,实际每天比原计划每天多做20个,结果提前5天完成任务。王师傅一共做了多少个零件?5、甲、乙两人进行3000米长跑,甲离终点还有500米时,乙离终点还有600米,照这样跑下去,当甲到终点时,乙距离终点还有多少米?第四讲一般应用题(二)教学目标:专题简介较复杂的一般应用题中,往往具有两组或两组以上的数量关系交织在一起,但是,再复杂的应用题都可以通过“转化”向基本的问题靠拢。因此,我们在解答一般应用题时要善于分析,把复杂的问题简单化,从而正确解答。例题一:把一条大鱼分成鱼头、鱼身和鱼尾三部分。鱼尾重4千克,鱼头的重量等于鱼尾的重量加上鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。这条鱼有多少千克?随堂练习【思路导航】三人拿同样多的钱买苹果应该分得同样多的苹果。24×2÷3=16(千克),也就是丙少拿了16千克苹果,所得的钱是32×2=64(元)。随堂练习1、甲和乙拿出同样多的钱买相同的铅笔若干支,分铅笔时,甲拿了13支,乙拿了7支,因此甲又给了乙6角钱。问每支铅笔多少钱?2、六一儿童节时同学们做纸花,小华买来7张红纸,小英买来了和红纸同样价格的5张黄纸,老师把这些纸平均分给了小华、小英和另外两个同学,结果另外两个同学共付给老师9元钱。问老师把9元钱怎么分给小华和小英?3、有一栋居明楼,每家都订2份不同的报纸,该居明楼共订了三种报纸,其中北京日报34份,江海晚报30份,电视报22份,那么订江海晚报和电视报的共有多少家?4、一艘轮船发生了漏水事故,立即安装两台抽水机向外抽水,此时已经漏进水800桶。一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完,每分钟进水多少桶?5、甲、乙两车同时从A城出发开往270千米的B城,甲车每小时行45千米,乙车每小时行40千米,出发后4小时,乙车加速,结果两车同时到达B城。求乙车后每小时行驶多少千米?第五讲1、学会借助线段、示意图、直观演示手段帮助分析题目。2、学会把复杂问题通过转换化,向基本问题靠拢。3、通过自己探索,激发学习兴趣。重点:学会借助线段、示意图、直观演示手段帮助分析题目。难点:通过分析,把复杂的问题简单化。解答一般应用题时,可以按下面的步骤进行:1、弄清题意,找出已知条件和所求问题。2、分析已知条件和所求问题之间的关系,找出解题的途径。3、拟定解答计划,列出算式,算出得数。4、检验解答方法是否合理,结果是否正确,最后写出答案。例题1:甲、乙两工人生产同样的零件,原计划每天共生产700个。由于改进技术,甲每天多生产100,乙的日生产量提高了1倍,这样二人一天共生产1020个。甲、乙原计划每天各生产多少个零件?思路导航】二人实际每天比原计划多生产1020-700=320(个)。这320个零件中,有100个是甲多生产的,那么320-100=220(个)就是乙日产量的1倍,即乙原理的日产量,甲原来每天生产700-220=480(个)零件。解(1020-700-100)÷(2-1)=220(个)700-220=480(个)答:甲原计划每天生产480个,乙原计划每天生产220个随堂练习第六讲盈亏问题教学目标:专题简介盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。例如:把一袋饼干分给班上的小朋友,如果没人分3快,则多12块;如果没人分4块,则少8块。小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数还有一些非标准的盈亏问题,他们被分为四类:1、两盈:两次分配都有余。2、两亏:两次分配都不够。3、盈适足:一次分配有余,一次分配刚好。4、不足适足:一次分配不够,一次分配正好。一些非标准的盈亏问题都可以由标准的盈亏问题演变过来的,解题时我们可以记住:1、“两亏”问题的基本数量关系是:(亏-亏)÷两次所分之差=参与分配对象的总数。2、“两盈”问题的基本数量关系是:(盈-盈)÷两次所分之差=参与分配对象的总数。3、“一盈一亏”问题的基本数量关系是:(盈+亏)÷两次所分之差=参与分配对象的总数。例题1:某校乒乓球队有若干学生。如果少一个女生,增加一个男生,则男生为总数的一半;如果少一个男生,多一个女生,则男生人数为女生人数的一半,乒乓球队共有多少名学生?【思路导航】(1)由“如果少一个女生,增加一个男生,则男生为总数的一半”可知,女生比男生多2人。(2)“少一个男生,多一个女生”后,女生就比男生多2+2=4(人),这时男生为女生人数的一半,即现在女生有4×2=8(人),原来女生有8-1=7(人),男生有7-2=5(人),共有7+5=12(人)。1、学校买来了白色粉笔盒彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍,学校买来两种粉笔各多少盒?2、在一群小学生中,若增加2个男生,减少1个女生,则男、女生的人数同样多,若少1个男生,增加1个女生,则男生是女生人数的一半。这群小学生中男、女生各有多少人?例题2、幼儿园老师给小朋友分梨子,如果每个小朋友分4个,则多出9个;如果每个人分5个,则少6个。问有多少个小朋友?有多少个梨子?【思路导航】这是一道典型的“一盈一亏”题。由题意可知,小朋友的人数和梨子的个数是不变的。比较两次分梨的情况,结果相差9+6=15(个),即分4个比每人分5个多余15个梨。为什么会余下15个梨呢?因为每人少分了5-4=1(个)梨,所以用15÷1=15(个)就是小朋友的人数。在用15×4+9=69(个)就是梨子的个数。随堂练习1、小明去买练习本,他付给营业员的钱买4本多1元,买6本又差2元。小明付给营业员多少钱?每本练习本多少钱?2、幼儿园老师将一筐苹果分给小朋友。如果分给大班的学生每人5个余下10个,如果分给小班的学生每人8个缺2个。已知大班比小班多3个学生,这筐苹果有多少个?3、老师把一箱饼干平均分给小班和中班的小朋友,平均每人分得6快;如果只分给中班的小朋友,平均每人可以多分得4块。如果只分给小班的小朋友,平均每人分得多少块?4、全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学。这个班有多少个同学?例题1:甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍,原来甲组有图书多少本?【思路导航】甲组的图书是乙组的3倍,若乙组拿出6本,甲组相应的也拿出6×3=18(本),则甲组仍是乙组的3倍。事实上甲组不但没有拿出18本,反而接受了乙组的6本,18+6正好对应着后来乙组的(5-3)倍。因此,后来乙组有图书(18+6)÷(5-3)=12(本),乙组原来有图书12+6=18本,甲组原来有18×3=54(本)。解(6×3+6)÷(5-3)=12(本)(12+6)×3=54(本)答:原来甲组有图书54本。随堂练习例题2:幼

1 / 66
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功