1.4有理数的加减第1课时有理数的加法1.经历探索有理数的加法法则,通过探索以及与同学之间的交流,总结出有理数加法法则,并能熟练利用有理数的加法法则解决有关运算问题.2.能够由特殊到一般,总结出有理数的加法法则,注意培养学生的观察、比较、归纳及运算能力.重点理解有理数加法的意义,探究有理数加法法则;能熟练利用有理数的加法法则解决有关有理数的加法运算.难点异号两数相加的法则.一、创设情境,导入新知1.我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想.2.从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆、6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱,还知道了自己这个月的收入和支出情况.我们可以用一个图形来表示他这种记账方式.“○”,“●”分别表红豆和黑豆.●●●●●●○○○○○○○○○○=○○○○,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4.当两个加数有负数时,加法应如何进行呢?下面我们借助数轴来理解有理数的加法运算.二、自主合作,感受新知回顾以前学的知识、阅读课文并结合生活实际,完成《探究在线·高效课堂》“预习导学”部分.三、师生互动,理解新知探究点:有理数的加法法则问题1:一间0℃冷藏室的温度第一次改变了5℃,第二次改变了3℃.问:两次变化使温度共上升了多少摄氏度?把温度上升记作正,温度下降记作负,在数轴上表示连续两次温度的变化结果,写出算式.(1)第一次上升5℃,第二次上升3℃;(+5)+(+3)=+8(2)第一次上升-5℃,第二次上升-3℃;(-5)+(-3)=-8结论:同号两数相加,取相同的符号,并把绝对值相加.(3)第一次上升5℃,第二次上升-3℃;(+5)+(-3)=+2(4)第一次上升-5℃,第二次上升3℃;(-5)+(+3)=-2结论:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.问题2:一间0℃冷藏室的温度第一次上升了5℃,第二次上升了-5℃.问:两次变化使温度共上升了多少摄氏度?(+5)+(-5)=0结论:互为相反数的两个数相加得零.问题3:一间0℃冷藏室的温度第一次上升了-5℃,第二次上升了0℃.问:两次变化使温度共上升了多少摄氏度?(-5)+0=-5结论:一个数同零相加,仍得这个数.四、应用迁移,运用新知1.有理数的加法法则例1、例2见课本P18例1、P19例2.方法总结:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与绝对值.2.有理数加法在实际生活中的应用例3股民默克上周交易截止前以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:星期一二三四五每股涨跌/元44.5-1-2.5-6(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?解析:(1)用买进的价格加上星期一、星期二、星期三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后比较大小即可得解.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)星期一:67+4=71(元),星期二:71+4.5=75.5(元),星期三:75.5+(-1)=74.5(元),星期四:74.5+(-2.5)=72(元),星期五:72+(-6)=66(元),所以本周内每股最高价为75.5元,最低价66元.方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.3.和有理数性质有关的计算问题例4已知|a|=5,b的相反数为4,则a+b=______.解析:因为|a|=5,所以a=-5或5;因为b的相反数为4,所以b=-4.则a+b=-9或1.方法总结:本题涉及绝对值和相反数的定义,在解决绝对值问题时要注意考虑全面,避免漏解.五、尝试练习,掌握新知课本P19~20练习第1~5题.《探究在线·高效课堂》“随堂演练”部分.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两数相加得0;(4)一个数同0相加,仍得这个数.七、深化练习,巩固新知课本P26习题1.4第1、3(1)(2)(3)题.第2课时有理数的减法1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算.2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算技能.重点掌握有理数的减法法则,能熟练进行有理数减法的运算.难点运用有理数的减法法则熟练进行减法运算.一、创设情境,导入新知在前面的学习中,我们知道,由于引入了负有理数,打破了小学所学的算术加法的运算秩序,我们在实例的基础上归纳出了有理数加法的法则.同样地,引入了负有理数以后,怎样进行有理数的减法运算呢?我们还是从实例出发来研究这个问题.二、自主合作,感受新知回顾以前学的知识、阅读课文并结合生活实际,完成《探究在线·高效课堂》“预习导学”部分.三、师生互动,理解新知探究点:有理数减法法则问题:下表记录了某地某年2月1日至2月10日每天气温情况:月/日2/12/22/32/42/52/62/72/82/92/10最高温度/℃121055356689最低温度/℃32-4-5-4-3-3-10-2怎样求出该地2月3日最高温度与最低温度的差呢?列出算式:5-(-4).如何计算呢?问题1:你能从温度计(课本图1-9)上看出5℃比-4℃高多少摄氏度吗?5℃比0℃高5℃,0℃比-4℃高4℃,因此,5℃比-4℃高9℃.用式子表示为:5-(-4)=9(℃).比一比:比较以下两个式子,你能发现其中的规律吗?所以通过上面的探究可得结论:有理数减法法则:减去一个数,等于加上这个数的相反数.四、应用迁移,运用新知1.有理数的减法法则例1见课本P21例3.方法总结:进行有理数减法运算时,先将减法转化为加法,再根据有理数加法法则进行计算.要特别注意减数的符号.2.有理数减法在实际生活中的应用例2见课本P21例4.例3上海某天的最高气温为6℃,最低气温为-1℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃解析:由题意得6-(-1)=6+1=7(℃).方法总结:要根据题意列出算式,再运用有理数的减法法则解答.3.应用有理数减法法则判定正负性例4已知有理数a<0,b<0,且|a|>|b|,试判定a-b的符号.解析:判断a,b差的符号,可能不好理解,不妨把它转化为加法a-b=a+(-b),利用加法法则进行判定.解:因为b<0,所以-b>0.又因为a0,a-b=a+(-b),且|a|>|b|,即|a|>|-b|,所以取a的符号,而a<0,因此a-b的符号为负号.方法总结:此类问题如果是填空或选择题,可以采用“特殊值”法进行判断;若是解答题,可以将减法转化为加法通过运算法则来解答.五、尝试练习,掌握新知课本P21~P22练习第1~4题.《探究在线·高效课堂》“随堂演练”部分.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习有理数的减法法则:(1)运算法则为:减去一个数,等于加上这个数的相反数.(2)在做减法时,先把它转化为加法,再运用加法法则进行计算.(3)在有理数范围内,是不存在“不够减”的问题的,被减数可以比减数小,差也可能大于被减数.七、深化练习,巩固新知课本P26习题1.4第2、5、8、10题.第3课时加、减混合运算1.会用有理数的加、减运算法则进行混合运算,并会用运算律进行简便计算.2.利用有理数的加、减混合运算解决一些简单实际问题,使学生初步了解类比学习的思想方法.重点利用有理数的混合运算以及应用运算律解决实际问题.难点式子中仅含有加法运算时,通常省略加号与括号的计算.一、复习旧知,导入新课复习提问:1.叙述有理数加法法则.2.叙述有理数减法法则.3.叙述加法的运算律.(特别提醒:对于有理数来说,加法的运算律同样适用)4.符号“+”和“-”各代表哪些意义?5.-9+(+6);(-11)-7.(1)读出这两个算式.(2)“+”、“-”读作什么?是哪种符号?“+”、“-”又读作什么?是什么符号?把两个算式-9+(+6)与(-11)-7之间加上减号就成了另一个题目,这个题目中既有加法又有减法,这就是我们今天学习的有理数的加、减混合运算.二、自主合作,感受新知回顾以前学的知识、阅读课文并结合生活实际,完成《探究在线·高效课堂》“预习导学”部分.三、师生互动,理解新知探究点一:加法运算律问题:某地冬天某日的气温变化情况如下:早晨6:00的气温为-2℃,到中午12:00上升了8℃,到14:00又上升了5℃,且为当天的最高气温,到18:00降低了7℃,到23:00又降低了4℃.问23:00的气温是多少?解析:用正、负数表示气温的上升与下降,那么这个问题就转化为求:(-2)+(+8)+(+5)+(-7)+(-4).①思考:你会计算(-2)+(+8)+(+5)+(-7)+(-4)吗?交流:你是如何计算的?由前面的加法法则知:两个数相加,再将和与第三个数相加,如此下去,得出结果.回顾:在小学学习时,我们知道加法有两条运算律.加法交换律:a+b=b+a.加法结合律:(a+b)+c=a+(b+c).引入负数后,可以验算加法的运算律同样适用,这里的a、b、c可以表示有理数.交流:计算(-2)+(+8)+(+5)+(-7)+(-4),有更快捷的方法吗?原式=(-2)+(-7)+(-4)+(+8)+(+5)(加法交换律)=[(-2)+(-7)+(-4)]+[(+8)+(+5)](加法结合律)=-13+13=0.即该地当天23:00的气温是0℃.探究点二:加减混合运算①式中仅含有加法运算,这样的几个正数与负数的和叫代数和,通常可以省去加号及各个括号,写出:-2+8+5-7-4.②按性质符号(结果)可读成“负2、正8、正5、负7、负4的和”;按运算符号读成“负2加8加5减7减4”.注意:将有理数加减混合运算统一成加法运算,以及把式子写成省略加号和括号的形式.注意在有理数加减混合运算时,一般先应转换为加法运算,然后省略括号,再计算.计算器的品种很多,它们的计算程序和方法不尽相同,使用前要注意看清各自的说明书.请学生尝试用计算器计算②式.四、应用迁移,运用新知1.加法运算律例1见课本P24例6.方法总结:合理地运用有理数的加法运算律可使计算简化.在进行多个有理数相加时,一般可以用加法交换律和加法结合律简化运算.2.加减混合运算统一成加法运算例2将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(-13)-(-7)+(-21)-(+9)+(+32).解析:先把加减法统一成加法,再省略括号和加号;读有理式,式子中第一项的符号,要作为这一项的符号读出正负来,式子中的符号就读作加或减.解:(-13)-(-7)+(-21)-(+9)+(+32)=-13+7-21-9+32.读法一:负13、正7、负21、负9、正32的和;读法二:负13减去负7减去21减去9加上32.方法总结:注意掌握括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号.3.有理数的加减混合运算例3计算:(1)-9.2-(-7.4)+915+(-525)+(-4)+|-3|;(2)23-18-(-13)+(-38).解析:本题根据有理数加减互为逆运算的关系把减法统一成加法,省略加号后,运用加法运算律,简化运算,求出结果.解:(1)-9.2-(-7.4)+915+