现代钢桥大连理工大学2011~2012学年结课论文论题有关钢桥的发展史及未来前景展望班级0710姓名李肖恒专业土木工程(英强)学号200759012有关钢桥的发展史及未来前景展望1有关钢桥的发展史及未来前景展望前言:桥梁是线路的重要组成部分。在历史上,每当运输工具发生重大变化,对桥梁在载重、跨度等方面提出新的要求,便推动了桥梁工程技术的发展。近代随着科技的发展及科技在桥梁等方面的运用,使桥梁的建造取得了突飞猛进的发展。随着经济的飞速发展,人们对交通的要求日益提高。桥梁出现的伊始只是为了满足通行的需求,在物质文明高度发展的这个时代,人们日益追求精神上的享受,在满足人们需求,在合理的技术前提下,桥梁人不断探索和寻求新型的结构,为桥梁的发展做出了很大的贡献。钢桥每次突飞猛进的发展都和科技的进步离不开关系。悬索桥作为最早出现的桥梁结构之一,在出现的很长一段时间内,只在一些极其恶劣的环境中采用。人们在那时候选择用悬索结构,大都是因为当时科技水平受限,大跨径的桥梁只能用悬索结构,才可以正常的建造,以满足通行的需求。钢桥在它仅仅两百多年的发展史中,在各方面都取得了重大的突破。自十九世纪末以来,相继建立起梁的定理和结构分析理论,推动了桁架桥的发展,并出现多种形式的桁梁。1857年由圣沃南在前人对拱的理论﹑静力学和材料力学研究的基础上,提出了较完整的梁理论和扭转理论。这个时期连续梁和悬臂梁的理论也建立起来。桥梁桁架分析(如华伦桁架和豪氏桁架的分析方法)也得到解决。19世纪70年代后经德国人K.库尔曼﹑英国人W.J.M.兰金和J.C.麦克斯韦等人的努力,结构力学获得很大的发展,能够对桥梁各构件在荷载作用下发生的应力进行分析。这些理论的发展,推动了桁架﹑连续梁和悬臂梁的发展。但那时对桥梁抗风的认识不足,桥梁一般没有采取防风措施。1879年12月大风吹倒才建成18个月的阳斯的泰湾铁路锻铁桥,就是由于桥梁没有设置横向连续抗风构。刚桁架桥桥梁的发展在十九世纪取得了重大的突破,如1990年建造的福斯湾铁路桥。全长达到了1625m。但受限于当时的理论的不完整性,对桥梁抗风设计没有一个完整的理论体系,打垮径的桥是以粗壮杆件的使用我前提的。全桥用钢量达到了54000t,每米用钢量达33.2t(双线)。在1890之后,北美洲在钢桥建设方面取得了巨大的成就,简支和连续桁架梁桥、刚拱桥都都有了很大的发展,创造了许多世界记录。当时的结构力学和弹性力学都已经发展的相对完善,对桁架体系梁的受力问题可以很好的解决。所以,很多那个时代建造的桥,到现在已经屹立百余年,而保存至今,并还能保持较好的运营状态。只是首先与当时的计算水平,有限元理论尚未完备,在有关风荷载等动力荷载的计算上都还不完备。我们观察可以发现,当时遗留下来,能够完美运营至今的桥梁体系,基本都选用了较为粗壮的杆件,放到现在的角度来看,是有些浪费了。到二十世纪二三十年代,钢桥的设计理论有了很大的发展。1923年,英国成立了一个桥梁应力委员会,对节点刚性引起的二次盈利、主梁和桥面系共同作用、荷载在桥面铺装层之中的扩散和冲击作用等问题进行了较为深入的讨论。以此为一局,英国在1929年将钢桥的设计容许应力提高了12.5%。1923~1933年,美国经过实验,为钢压杆推荐了正割公式。塔科马海峡大桥位于美国华盛顿州的塔科马海峡。第一座塔科马海峡大桥,绰号舞动的格蒂,于1940年7月1日通车,四个月后戏剧性地被微风摧毁,大桥的倒塌发生在一个此前从未见过的扭曲形式发生后,当时的风速大约为每小时40英里。这就是力学上的扭转变形,中心不动,两边因有扭矩而扭曲,并不断振动。这种振动是由于空气弹性颤振引起的。有关钢桥的发展史及未来前景展望2颤振的出现使风对桥的影响越来越大,最终桥梁结构像麻花一样彻底扭曲了。在塔科马海峡大桥坍塌事件中,风能最终战胜了钢的挠曲变形,使钢梁发生断裂。拉起大桥的钢缆断裂后使桥面受到的支持力减小并加重了桥面的重量。随着越来越多的钢缆断裂,最终桥面承受不住重量而彻底倒塌了。塔科马海峡大桥的坍塌使得空气动力学和共振实验成为了建筑工程学的必修课。这里的共振和受迫共振(由周期运动引发的,如步伐整齐的一队士兵渡桥)不同。在该案例中没有周期性扰动。当时风速稳定在每小时42英里(67公里/小时),频率0.2赫兹。这样的风速本应对大桥够不成威胁。因此此次事件只能被理解为空气动力学和结构分析不严密所致,以后所有的桥梁,无论是整体还是局部,都必须通过严格的数学分析和风洞测试。自二十世纪五十年代以来,在公路桥蓬勃发展的背景下,出现了现代钢桥。在此之前,许多桥梁,特别是哪些创纪录的长跨桥,往往是在不计工本的情况下建造的。现代的桥梁,要求经济、耐用,要求对各种技术经济指标(省料、省工、省总造价、对环境的影响等)进行综合的评价。钢桥的形式也逐渐多样化。钢索桥,钢斜拉桥,钢拱桥,钢桁架桥,钢悬臂梁(桁架)桥,钢箱梁桥等,都朝着大跨径的方向发展,结构的形式也更加的合理和美观。随着近些年,我国桥梁的飞速发展,我国桥梁的建设取得了一个有一个的突破。无论是铁路桥梁,还是传统桥梁,都取得了举世瞩目的成就。但不可否认的是,还桥梁的建设和理论都还存在着各种各样的问题,尤其我国的桥梁规范已经二十余年没有更新,很多都还在参照国外的规范进行建造。但,我国也克服了种种困难,修建了一座又一座的雄伟桥梁。无论是在跨径和结构形式上都有了重大的突破。自从桥梁建造开始,风荷载的问题一直都是大家关心和关注的一个焦点问题,有关风荷载的研究,及动力学的研究,都是大家一直在关心和关注的重要的和信问题。尤其是,当桥梁的跨径超多一定的限度后,这一现象尤为突出。风荷载作用下大跨度桥梁的动力响应及行车安全分析,也称为了一哥热点问题。根据桥梁结构动力学、车辆动力学、轮轨相互作用以及结构风振的基本原理,研究风、列车、桥梁构成的动力相互作用系统的振动机理。结合实桥的动力研究,建立风荷载作用下的列车和大跨度桥梁系统动力相互作用分析模型,研究桥梁在脉动风荷载和列车荷载同时作用下的振动特性,以及桥上列车受风荷载作用下运行的安全性和平稳性,从而得出风速、车速、桥型等多种因素对风—车—桥动力系统振动特性等影响的研究结论。主要研究内容如下。1)结合我国现阶段大跨度桥梁的建设,考虑桥梁的抖振以及与脉动风之间的自激振动、列车—桥梁耦合振动、车体横向平均风压形成的移动荷载对桥梁的横向冲击、以及侧向风对车辆的影响等多种因素,建立风荷载作用下的列车和桥梁系统动力相互作用理论分析模型。2)提出建立桥址区的脉动风速场的简化方法。采用谱解法将实际面状的大跨度桥梁的三维相关脉动风速场简化为沿主梁分布的一维脉动风速场,并采用快速Fourier逆变换技术加快模拟速度。脉动风场中各风速点的模拟功率谱函数、自相干函数以及互相干函数与目标值吻合良好。从而导出车辆和桥梁静风力、抖振风力和自激风力的时域表达式。3)基于上述分析模型和方法,采用模态综合技术,建立风—车—桥系统动力方程组,并编制风—车—桥动力系统耦合振动分析计算程序。4)以武汉天兴洲公铁两用大跨度桥梁的大跨度悬索桥和斜拉桥两个不同阶段的设计方案为实际工程背景,采用本文建立的风—车—桥耦合振动的分析计算程序,对大跨度桥梁同时在脉动风和运行列车两种荷载工况作用下的动力响应进行动力仿真计算,并对桥梁的振动性能进行分析评价。计算结果表明:脉动风对大跨度桥梁,特别是悬索桥的动力响应影响显著;桥梁的横向、扭转位移响应主要受风力控制,随风速的增大而逐步急速增大;桥梁的竖向位移响应主要受运行列车的影响较大,但随着风速的不断增大,列车的影响逐渐减弱;作用在移动车体上的横向平均风压对桥梁的横向冲击作用十分显著,它是引起桥面横向位移响应的重要因素。5)通过理论推导和分析实例研究车桥系统的共振机理和共振条件。桥梁在有关钢桥的发展史及未来前景展望3移动车辆作用下产生的共振包括:①由车辆重量、离心力、横向平均风荷载等形成移动荷载列对桥梁周期性动力作用引起的共振;②由荷载列对桥梁加载速率引起的共振;③由轨道不平顺、轮对蛇行等周期性加载引起的共振等。车桥系统的共振与桥梁跨度、长度、竖向和横向刚度、列车编组、车辆轴距参数及车辆的自振频率等因素有关。6)根据车辆动力学的基础理论,分析并确定桥上车辆运行安全性、平稳性的评判准则。采用本文建立的风—车—桥耦合振动的分析方法,模拟列车通过武汉天兴洲公铁两用大跨度悬索桥、斜拉桥方案的全过程,对列车在大跨度桥梁上受风运行时所产生的各项振动指标进行计算分析,包括脱轨系数、轮重减载率、轮轴横向力、倾覆系数、舒适度指标以及横、竖向车体振动加速度。通过多工况对比分析风速、车速、桥型等多种因素对风—车—桥动力系统振动特性的影响,确定桥上列车运行安全的风速阈值。对风荷载作用下列车在大跨度桥梁上运行的安全性和平稳性进行评价。计算结果表明:脉动风引起桥梁和车辆的抖振,它们对桥上列车的运行性能有很大影响;风荷载直接作用于运动着的车体本身,有使列车发生倾覆、脱离轨道的危险;车辆的各项振动指标均随着风速的增大而逐步急速增大,当平均风速超过25m・s-1时,桥上列车的运行安全将受到威胁。静风荷载作用下(1)结构形式、风的初始角度等因数对大跨度桥梁的静风响应都有不同程度的影响。(2)大跨境桥梁静风失稳时的构形表现为空间弯扭耦合失稳,扭转变形对结构静风响应的影响是明显的。(3)计入材料的非线性,静风临界风速教不计入的结果小,但失稳时结构并不变成机构,即材料非线性降低了结构的切线刚度,但非引起失稳的主要原因。(4)大跨度桥梁的朱亮断面的升力距曲线斜率与其静风临界风速关系密切,升力距曲线梯度小,结构的空气静力稳定性就好,改善主梁断面的升力距曲线,可以改善大跨径桥梁的空气静力稳定性。无论是静风还是动风荷载,对桥梁的影响都是显而易见的。在未来桥梁的发展过程中,尤其是大型跨海桥梁的建造过程中,风荷载的影响是一个重中之重的指标。当理论体系更完善的时候,桥梁结构会产生一个新的突破,一大批新型结构的桥梁会出现。桥梁工程师们,一定会设计出更加合理,更加经济的抗风断面。参考文献:静风荷载引起的超大跨度桥梁关键问题研究同济大学肖汝诚等风荷载作用下大跨度桥梁的动力响应及行车安全北京交通大学郭薇薇等现代钢桥吴冲等主编百度百科有关塔科马海峡大桥的介绍