地球与月亮地球的基本参数:平均赤道半径:ae=6378136.49米平均极半径:ap=6356755.00米平均半径:a=6371001.00米赤道重力加速度:ge=9.780327米/秒2平均自转角速度:ωe=7.292115×10-5弧度/秒扁率:f=0.003352819质量:M⊕=5.9742×1024公斤地心引力常数:GE=3.986004418×1014米3/秒2平均密度:ρe=5.515克/厘米3太阳与地球质量比:S/E=332946.0太阳与地月系质量比:S/(M+E)=328900.5回归年长度:T=365.2422天离太阳平均距离:A=1.49597870×1011米逃逸速度:v=11.19公里/秒表面温度:t=-30~+45表面大气压:p=1013.250毫巴地球自转地球存在绕自转轴自西向东的自转,平均角速度为每小时转动15度。在地球赤道上,自转的线速度是每秒465米。天空中各种天体东升西落的现象都是地球自转的反映。人们最早利用地球自转作为计量时间的基准。自20世纪以来由于天文观测技术的发展,人们发现地球自转是不均的。1967年国际上开始建立比地球自转更为精确和稳定的原子时。由于原子时的建立和采用,地球自转中的各种变化相继被发现。现在天文学家已经知道地球自转速度存在长期减慢、不规则变化和周期性变化。通过对月球、太阳和行星的观测资料和对古代月食、日食资料的分析,以及通过对古珊瑚化石的研究,可以得到地质时期地球自转的情况。在6亿多年前,地球上一年大约有424天,表明那时地球自转速率比现在快得多。在4亿年前,一年有约400天,2.8亿年前为390天。研究表明,每经过一百年,地球自转长期减慢近2毫秒(1毫秒=千分之一秒),它主要是由潮汐摩擦引起的。此外,由于潮汐摩擦,使地球自转角动量变小,从而引起月球以每年3~4厘米的速度远离地球,使月球绕地球公转的周期变长。除潮汐摩擦原因外,地球半径的可能变化、地球内部地核和地幔的耦合、地球表面物质分布的改变等也会引起地球自转长期变化。地球自转速度除上述长期减慢外,还存在着时快时慢的不规则变化,这种不规则变化同样可以在天文观测资料的分析中得到证实,其中从周期为近十年乃至数十年不等的所谓十年尺度的变化和周期为2~7年的所谓年际变化,得到了较多的研究。十年尺度变化的幅度可以达到约±3毫秒,引起这种变化的真正机制目前尚不清楚,其中最有可能的原因是核幔间的耦合作用。年际变化的幅度为0.2~0.3毫秒,相当于十年尺度变化幅度的十分之一。这种年际变化与厄尔尼诺事件期间的赤道东太平洋海水温度的异常变化具有相当的一致性,这可能与全球性大气环流有关。然而引起这种一致性的真正原因目前正处于进一步的探索阶段。此外,地球自转的不规则变化还包括几天到数月周期的变化,这种变化的幅度约为±1毫秒。地球自转的周期性变化主要包括周年周期的变化,月周期、半月周期变化以及近周日和半周日周期的变化。周年周期变化,也称为季节性变化,是二十世纪三十年代发现的,它表现为春天地球自转变慢,秋天地球自转加快,其中还带有半年周期的变化。周年变化的振幅为20~25毫秒,主要由风的季节性变化引起。半年变化的振幅为8~9毫秒,主要由太阳潮汐作用引起的。此外,月周期和半月周期变化的振幅约为±1毫秒,是由月亮潮汐力引起的。地球自转具有周日和半周日变化是在最近的十年中才被发现并得到证实的,振幅只有约0.1毫秒,主要是由月亮的周日、半周日潮汐作用引起的。地球公转1543年著名波兰天文学家哥白尼在《天体运行论》一书中首先完整地提出了地球自转和公转的概念。地球公转的轨道是椭圆的,公转轨道半长径为149597870公里,轨道的偏心率为0.0167,公转的平均轨道速度为每秒29.79公里;公转的轨道面(黄道面)与地球赤道面的交角为23°27',称为黄赤交角。地球自转产生了地球上的昼夜变化,地球公转及黄赤交角的存在造成了四季的交替。从地球上看,太阳沿黄道逆时针运动,黄道和赤道在天球上存在相距180°的两个交点,其中太阳沿黄道从天赤道以南向北通过天赤道的那一点,称为春分点,与春分点相隔180°的另一点,称为秋分点,太阳分别在每年的春分(3月21日前后)和秋分(9月23日前后)通过春分点和秋分点。对居住的北半球的人来说,当太阳分别经过春分点和秋分点时,就意味着已是春季或是秋季时节。太阳通过春分点到达最北的那一点称为夏至点,与之相差180°的另一点称为冬至点,太阳分别于每年的6月22日前后和12月22日前后通过夏至点和冬至点。同样,对居住在北半球的人,当太阳在夏至点和冬至点附近,从天文学意义上,已进入夏季和冬季时节。上述情况,对于居住在南半球的人,则正好相反。地极移动地极移动,简称为极移,是地球自转轴在地球本体内的运动。1765年,欧拉最先从力学上预言了极移的存在。1888年,德国的屈斯特纳从纬度变化的观测中发现了极移。1891年,美国天文学家张德勒指出,极移包括两个主要周期成分:一个是周年周期,另一个是近14个月的周期,称为张德勒周期。前者主要是由于大气的周年运动引起地球的受迫摆动,后者是由于地球的非刚体引起的地球自由摆动。极移的振幅约为±0.4角秒,相当于在地面上一个12×12平方米范围。根据近一百年的天文观测资料,发现极移包含各种复杂的运动。除了上述周年周期和张德勒周期外,还存在长期极移,周月、半月和一天左右的各种短周期极移。其中长期极移表现为地极向着西径约70°~80°方向以每年3.3~3.5毫角秒的速度运动。它主要是由于地球上北美、格棱兰和北欧等地区冰盖的融化引起的冰期后地壳反弹,导致地球转动惯量变化所致。其它各种周期的极移主要与日月的潮汐作用以及与大气和海洋的作用有关。岁差与章动在外力的作用下,地球的自转轴在空间的指向并不保持固定的方向,而是不断发生变化。其中地轴的长期运动称为岁差,而周期运动称为章动。岁差和章动引起天极和春分点位置相对恒星的变化。公元前二世纪,古希腊天文学家喜帕恰斯在编制一本包含1022颗恒星的星表时,首次发现了岁差现象。中国晋代天文学家虞喜,根据对冬至日恒星的中天观测,独立地发现了岁差。据《宋史·律历志》记载:虞喜云:'尧时冬至日短星昴,今二千七百余年,乃东壁中,则知每岁渐差之所至'。岁差这个名词即由此而来。牛顿第一个指出产生岁差的原因是太阳和月球对地球赤道隆起部分的吸引。在太阳和月球的引力作用下,地球自转轴在空间绕黄极描绘出一个圆锥面,绕行一周约需26000年,圆锥面的半径约为23°.5。这种由太阳和月球引起的地轴的长期运动称为日月岁差。除太阳和月球的引力作用外,地球还受到太阳系内其它行星的引力作用,从而引起地球运动的轨道面,即黄道面位置的不断变化,由此使春分点沿赤道有一个小的位移,称为行星岁差。行星岁差使春分点每年沿赤道东进约0.13角秒。地球自转轴在空间绕黄极作岁差运动的同时,还伴随有许多短周期变化。英国天文学家布拉得雷在1748年分析了20年恒星位置的观测资料后,发现了章动现象。月球轨道面(白道面)位置的变化是引起章动的主要原因。目前天文学家已经分析得到章动周期共有263项之多,其中章动的主周期项,即18.6年章动项是振幅最大的项,它主要是由于白道的运动引起白道的升交点沿黄道向西运动,约18.6年绕行一周所致。因而,月球对地球的引力作用也有相同周期变化,在天球上它表现为天极在绕黄极作岁差运动的同时,还围绕其平均位置作周期为18.6年的运动。同样,太阳对地球的引力作用也具有周期性变化,并引起相应周期的章动。地球的辐射带和磁层地球的辐射带分为两层,形状有点像是敲成两半儿的核桃壳。离地球较近的辐射带称为内辐射带,较远的称为外辐射带,也可以称之为内、外范·艾伦带。辐射带把地球从四面包围起来,而在两极处留下了空隙,也就是说,地球的南极和北极上空不存在辐射带。在地球周围被太阳风包围并受地球磁场控制的区域称为磁层。它是地球控制区域的最处层。地球磁层是由太阳风与地球磁场相互作用形成的。地球的固有磁场可近似用偶极场表示,地球磁场对高电导率的太阳风流有阻碍作用,太阳风流可压缩地球的磁力线。在太阳风的动压与地球磁场的磁压大约相等的区域,即形成太阳风与地球磁场的分界层,这个分界层称为磁层顶,磁层顶包围的区域即是磁层。磁层的形状像一个羽毛球,其向阳一侧约呈一椭球面,在平静太阳风中,向阳侧磁层顶在日-地联线上离地心的距离约为10个地球半径(Re=6371.2km),磁层顶前有一弓激波。其背阳一侧是拉长向外略张开的圆筒形,称为磁尾,磁尾的长度可长达1000个地球半径,磁尾的南北和东西宽度约为40个地球半径。在一般情况下,太阳风等离子体是不易进入磁层的,只有在封闭磁力线和张开磁力线分界的漏斗形区(称为极隙区或极尖区,)可进入磁层及电离层和高层大气。但太阳风粒子可通过磁场重联和粘性作用进入磁层。磁层是一个巨大的粒子库,它可贮存能量从几电子伏(eV)到几百兆电子伏(MeV)的等离子体和高能粒子。磁层中有几个粒子贮存区;等离子体层区贮存着密度较高温度较低(约107K)的冷等离子体;等离子体片区是热等离子体(约105K)的贮存区;地球辐射带区贮存着高达几百MeV高能粒子;环电流区是由几百keV的能量粒子形成的。在平静时,磁层中的粒子一般不会侵入电离层和高层大气。太阳风向磁层输入能量的另一种形式,是电磁能。太阳风和磁层相互作用形成巨大的发电机,称为太阳风-磁层发电机。当太阳风的速度加快和行星际磁场南向分量增强时,这一发电机产生高达100kV以上的越磁尾电位降、107A的电流及1022W的功率。当太阳风输入磁层的功率超过某一值时(约为1011J/s),由于磁层能量超载,磁层中的能量会通过某种不稳定性很快地释放出来,输入电离层和高层大气,这种磁层能量贮存和突然释放的过程,称为磁层亚暴,磁层亚暴的时间尺度约为1小时。当行星际磁场南向分量持续时间较长时,可间歇性地发生多次磁层亚暴,多个磁层亚暴可形成磁暴。磁层亚暴和磁暴可引起磁层、电离层和高层大气的剧烈扰动,如磁层粒子注入事件、极光活动、电离层暴和热层暴等。电离层电离层是地球大气的一个电离区域,高度范围约60~1000km,再往上即是磁层。电离层是由太阳X射线、紫外线和高能粒子对高中层大气的电离作用形成的。电离层是处于部分离的中高层大气区,含有相当多的自由电子,但中性大气仍很稠密,因而中性分子和带电粒子的碰撞频繁。观测表明,电离层电子密度随高度的分布具有分层结构。在离地面60~1000km的范围内,主要可分为三层,即D层、E层和F(F1层和F2层)层。D层位于60~90km的区域,电子密度在103cm-3以下,在夜间电子大量消失,D层可认为不复存在。E层约处于90~140km的区域,电子密度103~105cm-3,电子密度高峰通常位于110~120km。夜间E层的电子密度下降至5×10cm。F层在E层之上,其范围可一直伸延至上千km。在白天,F层可分为F1层和F2层,F2层在F1层之上。夜间F2层消失。F1层一般在140~200km范围,电子密度105cm-3。F2层可从200km伸至1000km。其电子密度峰值区于300km左右,最高电子密度可达106cm-3。太阳活动、磁层亚暴和磁暴对电离层结构产生很大的骚扰。电离层骚扰主要有电离层暴、电离层突然骚扰、极盖吸收和极光带吸收等。这些电离层扰动会严重影响无线电的传播。此外,从低层大气向上传播的行星波、声重波和大气准两年振荡等也对电离层结构产生显著扰动。中高层大气在地球强大引力的作用下,大量气体聚集在地球周围,形成数千千米的大气层。大气层一直可以延续到距地面6400千米左右。大气中氮占78%,氧占21%,氩占0.93%,二氧化碳占0.03%,氖占0.0018%,此外还有少量的水气和尘埃。大气的压力和密度是随高度的增加呈现指数的降低。但大气的温度却表现出分层结构。直到几百km,中层大气是构成大气的主要成分。从地面开始,大气可分为五层:对流层、平流层、中间层、热层和外层,其中平流层和中间层称为中层大气。在各层中温度随高度的分布是不同的。对流层厚度不均匀,赤道