循环冷却水系统微生物控制技术的研究

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

循环冷却水系统微生物控制技术的研究作者:苏腾陈中兴侯秋时间:2007-11-2419:34:00来源:论文天下论文网摘要:对长期以来认同的循环冷却水中微生物总数控制指标的合理性,提出了质疑,指出微生物孳生造成循环冷却水系统危害的根源,是系统内的附着微生物,即生物粘泥。作者认为,只要控制微生物不能在系统中附着,就会使微生物对循环水系统构成威胁的几率,大大降低,甚至不会产生危害。即使水体中细菌总数超过了现有的指标,循环水系统仍然可以正常运转。酶处理实验结果证明,系统大部分附着的粘泥可去除,而旁滤可使循环水中细菌总数,控制在一定范围内,不会无限增长。关键词:循环冷却水微生物控制酶处理生物粘泥均匀设计1引言工业循环冷却水系统给大量微生物的生长提供了良好的栖息地,微生物生长所必需的营养物和离子,可以通过补充水和周围空气带入的有机物或无机物供给,生产过程中物料的泄漏也为循环水系统微生物种群提供了养料。通过管道、热交换器、冷却塔填料及配水管道系统所提供的大量表面积,有效地促进了微生物种群的生长,微生物孳长给循环水系统带来极大危害。目前微生物控制普遍采用的方法是投加杀生剂直接杀灭微生物体,并将循环水中的各类细菌数降到国家标准规定的指标以下,如异养菌总数应不超过5×105个/毫升,以此作为循环水系统微生物成功控制的评判依据。在杀生剂的研发中,亦将杀生剂对水中活菌杀灭能力的大小,作为评判其性能好坏的标准。然而,人们长久以来依赖的这一依据或标准的合理性是值得质疑的。因为,循环水中悬浮异养菌的总数不超过5×105个/毫升,并不等同于循环水系统中异养菌的总数不超过5×105个/毫升。在循环冷却水系统中包含着两种不同的微生物种群:存在于循环水整体流动中的浮游微生物和在生物膜或生物粘泥中具有生长优势的附着微生物。监测循环水系统中微生物数量和相应杀生剂性能评价的传统指标,仅着眼于控制水中的浮游微生物群体,表1的数据可以说明[1],粘泥中各种菌类数量都要比循环水中高得多。尽管水中的悬浮细菌被杀灭,附着在系统壁上的生物粘泥仍然对系统构成危害,并且粘泥中的细菌又为循环水中细菌的再度繁殖提供了基础。这也是投加杀生剂来控制循环水中活菌数量有时并不能有效解决系统微生物孳长问题的原因。表1循环水中与生物粘泥中菌类数量比较(个/毫升)样品异养菌铁细菌硫酸盐还原菌亚硝化细菌反硝化细菌硫细菌氨化菌真菌循环水1.6×1057011.5702.0×1049.5×1022.2×1052.5生物粘泥1.3×1081.4×1051.6×1037.×1021.6×1061.6×1052.0×10880在有生物粘泥存在的系统,细菌体外通常有生物粘泥包覆,起到屏蔽保护作用,使杀生剂难以渗透接触到细菌体而将其杀灭,这又是杀生剂对于解决微生物孳长问题有时低效甚至无效的原因之一。杀生剂立足于杀灭微生物,杀灭是其主要手段,因此往往要求药剂对各种微生物具有极大的毒性。但毒性大的药剂往往难于或不易生物降解而造成环境污染。目前,人们合成和筛选新型高效低毒杀生剂的任务已经越来越艰难。20世纪70年代,HerbertJHatcher最早提出了用果聚糖水解酶处理工业水系统中生物粘泥的方法[2]。1977年,NalcoChemical公司的RonaldJChristensen等,用一种主要成分为戊聚糖酶和己聚糖酶的RhozymeHP-150酶(Rohm&Haas公司生产),处理实验室模拟冷却塔内粘泥,并申请了专利[3]。本文提出的酶处理方法,将为更好地解决循环水系统中微生物控制问题,提供一条标本兼治、无环境污染、有效的新途径。2酶处理方法的理论依据2.1生物粘泥的特性要从根本上着手解决循环水系统微生物危害,有必要研究生物粘泥的化学物理性质。“生物粘泥”与“生物膜”本质是一致的,在过去的20多年里,国外不少学者对生物膜产生了浓厚兴趣并进行了大量研究,取得了初步的成果[4]。2.1.1生物粘泥的化学组成生物粘泥是由微生物细胞分泌的具有粘性的胞外聚合物(ExtracellularPolymericSubstances,简称EPS),其胶合了微生物细胞及各种有机和无机颗粒物质,如粘土、腐蚀产物、腐殖质等[5],EPS的粘性使它易于附着在系统壁上生长。因此,生物粘泥代表了一种稳定的由微生物细胞组成的复杂混合物的微生态系统,细胞镶嵌在胞外聚合物的基质中,并且附着到固体表面。胞外聚合物或称胞外多糖(ExtracellularPolysaccharide),是生物粘泥的重要组分。克里布特里(Crabtreek)、阿伦(AllenW)和克拉尔(KrulJM)对此进行了深入的研究,对其存在和作用有了比较明确的认识[6]。胞外聚合物以细纤维的形状存在,把一些细菌网织在一起形成絮体。胞外聚合物的性质和目前人工合成的聚合电解质十分相似,并具有“生物絮凝”功能。FlemmingHC等指出,胞外聚合物由聚多糖及蛋白质、糖蛋白和脂蛋白组成[7]。从所有的生物膜的胞外聚合物组分中可以提取出腐殖酸、多糖、糖醛酸和DNA[8]。随生长环境不同,胞外多糖由同多糖或杂多糖组成。同多糖通常是末端含有1个葡萄糖单元的果聚糖,而由多粘芽孢杆菌(Bacilluspolymyxa)的许多菌株产生的则是杂多糖,包含有D-葡萄糖、D-甘露糖、D-半乳糖、D-果糖、葡萄糖醛酸和丙酮酸酯。有研究表明[9~14],由唾液链球菌(Streptococcussalivariusstrain51)和一些土壤细菌尤其是芽孢杆菌属(Bacillusspp.)分泌的胞外多糖为果聚糖,Zymomonas菌属(产生乙醇的兼性厌氧细菌)也分泌果聚糖作为副产物。同样,由血清型链球菌(Streptococcusserotype)、多粘芽孢杆菌(Bacilluspolymyxa)及运动发酵单胞菌属(ZymomonasmobilisIN-17-10)分泌的胞外多糖均为唯一的果聚糖。胞外聚合物具有纤维素的特性,对纤维素酶很敏感,在纤维素酶的作用下被溶化。2.1.2生物膜的物理性质细菌细胞分泌的胞外聚合物具有很大的粘性,使细菌能附着生长在各种载体表面。从流变学看,生物膜的性质与凝胶一样,具有粘弹性[15]。因此,在水流系统中生物膜能导致摩擦阻力的超比例增加。据报道,由于微生物覆盖层的影响,某管道的最大输送能力在3年内下降了50%以上,而管道横截面的减小导致相应输送能力的下降最多为3%。在研究生物膜引起轮船速度的下降中发现生物膜使摩擦阻力增加了22%。生物膜的导热性与水差不多在同1个数量级上,比相同厚度的优质钢的导热性约低27倍。由于表面的对流传热受阻,即使是很薄的生物膜也可明显地降低通过优质钢管的传热效率。CarlsonG等指出[16],生物膜呈负电性,由于静电排斥作用,生物膜对负电性有机分子的吸附能力降低。2.1.3生物膜的阻抗性[17]由于生物膜的特殊组织结构,生物膜对于抗生素、杀生剂表现了明显的阻抗性。EPS虽然不能阻止抗生素、杀生剂通过扩散接触到底部的微生物细胞,但它可猝灭具有化学反应性的杀生剂(如氯和过氧化物等),极大地结合带电性的抗生素(如托普霉素、庆大霉素),因此对较深层的细胞提供了保护。然而扩散限制作用不是生物膜阻抗特征的惟一控制因素,生物膜群落中建立的氧和营养物质梯度,导致不易获得营养的微生物生长速率被极大地减弱,缓慢的生长速率和严格的反应进一步对这种阻抗机制起作用。2.2生物粘泥的酶处理方法酶处理方法着眼于循环水系统中的附着态微生物(生物粘泥)。基于生物粘泥的化学物理特性,可利用投加酶处理剂中特定酶的高效催化性质,将具有粘性的EPS降解为葡萄糖和α-氨基酸等小分子物质而使其失去粘性,从而使附着微生物失去了粘附在系统壁上的基础而游离于循环水中。同时通过控制旁滤装置运行的方法,将悬浮细菌同步滤除,而把水体中细菌总数控制在一定限度内,不致失控。3实验部分在以α-淀粉酶、纤维素酶等为主要组分研制并优化了酶处理剂配方的基础上,运用均匀设计法对酶处理方法的影响因素进行了研究,并对工艺条件进行了优化。同时考察了酶处理前后系统细菌总数的变化。3.1实验流程参考美国腐蚀工程师协会(NACE)推荐的压力降法沉积物监测装置和USP4,936,994描述实验装置,搭建本实验循环水生物粘泥监测系统(见图1)。3.2实验设计[18]实验中采用了均匀设计法,选择A(处理温度)、B(处理pH)、C(处理流量)3个因素进行考察,采用U5(53)表安排实验,考察范围如下:A——处理温度30~38℃;B——处理pH=6.5~8.5;C——处理流量0.12~0.16m3/h。3.3实验方法3.3.1生物粘泥的模拟经过大量的探索与实践,并对生物膜成膜过程分析后,本文运用了生物粘泥的快速挂膜法。并确定:测压管道由3段90cm的聚丙烯材质管(DN8)串联而成,有效长度为342.2cm;营养水质按BOD5﹕N﹕P=100﹕5﹕1配取;碳源使用葡萄糖,葡萄糖﹕BOD5=1﹕0.6[19];以N取50mg/L为基准。实验使用菌种为污水处理站活性污泥中的异养菌。在系统中投入菌种后,控制水温(30±1)℃,循环水流量0.13m3/h,循环曝气6h,停止曝气后小流量循环培养4h,换水排掉悬浮态细菌,再按BOD5﹕N﹕P=100﹕5﹕1的比例加入营养液,重复上述操作,以10h为1个培养周期。一般培养4~5个周期就能使生物膜达到理想的厚度(2~3mm),并趋于稳定。挂膜速度随室温的升高而加快。3.3.2酶处理在生物粘泥生成后,向循环水系统中投加100mg/L酶处理剂,同时开启旁滤回路,控制旁滤水量为循环水量的5%~8%。恒定温度和pH值,记录测压管段压差变化,得到压差与处理时间的关系曲线。待到测压管段压差趋于平衡或显回升态势时停止实验。3.4分析方法3.4.1粘泥去除效果的评定酶处理生物粘泥的效果,可由处理前后管段间压差的减小来表征。以测压管段压降对时间作图,得到整个处理过程中的初始压降(Pi)(t=0时)、最大压降(Pm)和最小压降(Pt)(t>10h),则粘泥去除效率(Y)由下式计算:Y=[1-(Pt-Pi)/(Pm-Pi)]×100%3.4.2循环水中异养菌总数测定采用测试瓶法测定异养菌总数,在处理开始和结束时各取1次水样,处理过程中隔5h取1次水样。4结果与讨论4.1酶处理的影响因素实验中将因素A、B、C分为5个水平列于表2,按U5(53)表安排实验,实验方案及结果如表3。表2水平因素表水平因素12345A(处理温度℃)3032343638B(处理pH)6.57.07.58.08.5C(处理流量m2/h)0.120.130.140.150.16表3酶处理影响因素实验设计方案及结果A(处理温度,℃)B(处理pH)C(处理流量,m3/h)生物粘泥去除率(%)11(30)2(7.0)4(0.15)72.022(32)4(8.0)3(0.14)58.633(34)1(6.5)2(0.13)88.044(36)3(7.5)1(0.12)67.555(38)5(8.5)5(0.16)42.4从表3可以看出,在动态模拟条件下,影响因素的考察范围内,酶处理剂均有粘泥去除的效果。然而在pH>8.0时,较高温度促进了酶处理剂中激活组分的失效,从而使处理效果下降。4.2酶处理工况条件的优化对上述均匀设计实验结果,采用SAS软件系统进行了多元回归分析[20],得到Y与因素A、B、C的回归方程。在应用二次模型进行回归分析时,由残差图发现原问题有异方差性,导致参数的显著性检验失效,回归模型不理想。于是,对原问题的Y变量进行了方差稳定化变换[21],令Y’=1/Y,消除了原问题的异方差性。对上述问题进行Durbin-Watson检验,发现统计量为2.250,接近于2,说明上述数据的随机扰动项与序列无关,保证了对模型有关统计处理的正确性。各变量A、B、C的方差扩大因子分别为:1.5000、2.0000、1.5000,与1的差距不是太大,从而表明各个解释变量之间不存在多重共线性,保证了回归方程的准确性。此时新得到的回归方程是:Y’=-0.040188+0

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功