课时作业(二十三)1.(2013·东城区期末)已知cos78°约等于0.20,那么sin66°约等于()A.0.92B.0.85C.0.88D.0.95答案A2.设f(sinx)=cos2x,那么f(32)等于()A.-12B.-32C.12D.32答案A3.若cos2αsinα-π4=-22,则sinα+cosα的值为()A.-72B.-12C.12D.72答案C解析cos2αsinα-π4=sinπ2-2αsinα-π4=2sinπ4-αcosπ4-αsinα-π4=-2cos(π4-α)=-2(22sinα+22cosα)=-2(sinα+cosα)=-22.所以sinα+cosα=12.4.(2013·湖北八校)已知f(x)=2tanx-2sin2x2-1sinx2cosx2,则f(π12)的值为()A.43B.833C.4D.8答案D解析∵f(x)=2(tanx+cosxsinx)=2×(sinxcosx+cosxsinx)=2×1cosx·sinx=4sin2x,∴f(π12)=4sinπ6=8.5.若3sinα+cosα=0,则1cos2α+sin2α的值为()A.103B.53C.23D.-2答案A解析由3sinα+cosα=0,得cosα=-3sinα.则1cos2α+sin2α=sin2α+cos2αcos2α+2sinαcosα=9sin2α+sin2α9sin2α-6sin2α=103,故选A.6.(2012·山东)若θ∈[π4,π2],sin2θ=378,则sinθ=()A.35B.45C.74D.34答案D解析∵θ∈[π4,π2],2θ∈[π2,π],故cos2θ0.∴cos2θ=-1-sin22θ=-1-3782=-18.又cos2θ=1-2sin2θ,∴sin2θ=1-cos2θ2=1--182=916.∴sinθ=34,故选D.7.(2013·洛阳统考)若cos2αsinα+π4=12,则sin2α的值为()A.-78B.78C.-47D.47答案B解析cos2αsinα+π4=cos2α-sin2αsinαcosπ4+cosαsinπ4=2(cosα-sinα)=12,即cosα-sinα=24,等式两边分别平方得cos2α-2sinαcosα+sin2α=1-sin2α=18,解得sin2α=78.8.(2013·衡水调研卷)计算tanπ4+α·cos2α2cos2π4-α的值为()A.-2B.2C.-1D.1答案D解析tanπ4+α·cos2α2cos2π4-α=sinπ4+α·cos2α2sin2π4+αcosπ4+α=cos2α2sinπ4+αcosπ4+α=cos2αsin2π4+α=cos2αsinπ2+2α=cos2αcos2α=1,选D.9.(2013·郑州质检)已知tanα=2,则2sin2α+1sin2α=()A.53B.-134C.135D.134答案D解析2sin2α+1sin2α=3sin2α+cos2α2sinαcosα=3tan2α+12tanα=134,故选D.10.已知函数f(x)=sinx-cosx且f′(x)=2f(x),f′(x)是f(x)的导函数,则1+sin2xcos2x-sin2x=()A.-195B.195C.113D.-113答案A解析f′(x)=cosx+sinx,由f′(x)=2f(x),即cosx+sinx=2(sinx-cosx),得tanx=3,所以1+sin2xcos2x-sin2x=1+sin2xcos2x-2sinxcosx=2sin2x+cos2xcos2x-2sinxcosx=2tan2x+11-2tanx=-195.11.若θ∈[0,π)且cosθ(sinθ+cosθ)=1,则θ=________.答案0或π412.已知sinx=5-12,则sin2(x-π4)=________.答案2-5解析sin2(x-π4)=sin(2x-π2)=-cos2x=-(1-2sin2x)=2sin2x-1=2-5.13.设α为第四象限的角,若sin3αsinα=135,则tan2α=________.答案-34解析sin3αsinα=sin2α+αsinα=sin2αcosα+cos2αsinαsinα=135.∴2cos2α+cos2α=135,2cos2α-1+cos2α=85.∴cos2α=45.∵2kπ-π2α2kπ,∴4kπ-π2α4kπ(k∈Z).又∵cos2α=450,∴2α为第四象限的角.sin2α=-1-cos22α=-35,∴tan2α=-34.14.已知sinα=cos2α,α∈(π2,π),则tanα=________.答案-33解析sinα=1-2sin2α,∴2sin2α+sinα-1=0.∴(2sinα-1)(sinα+1)=0,∵α∈(π2,π),∴2sinα-1=0.∴sinα=12,cosα=-32,∴tanα=-33.15.在△ABC中,tanA+tanB+3=3tanA·tanB,且sinA·cosA=34,则此三角形为________.答案等边三角形解析∵tanA+tanB+3=3tanAtanB,∴tan(A+B)=-3,得A+B=120°.又由sinAcosA=34,得sin2A=32.∴A=60°(A=30°舍去),∴△ABC为等边三角形.16.(2013·西城区期末)已知tan(π4+θ)=3,则sin2θ-2cos2θ=__________.答案-45解析方法一sin2θ-2cos2θ=sin2θ-cos2θ-1,sin2θ=-cos2(θ+π4)=-1-tan2θ+π41+tan2θ+π4=45,cos2θ=sin2(θ+π4)=2tanθ+π41+tan2θ+π4=35,∴原式=45-35-1=-45.方法二tan(π4+θ)=3,1+tanθ1-tanθ=3,解得tanθ=12,sin2θ-2cos2θ=2sinθcosθ-2cos2θsin2θ+cos2θ=2tanθ-2tan2θ+1=-45.17.在△ABC中,已知A、B、C成等差数列,则tanA2+tanC2+3tanA2tanC2的值为________.答案3解析由已知B=60°,A+C=120°,∴tanA2+tanC2+3tanA2·tanC2=tanA+C2(1-tanA2·tanC2)+3tanA2tanC2=3(1-tanA2·tanC2)+3tanA2tanC2=3.18.化简:2cos4x-2cos2x+122tanπ4-x·sin2π4+x.答案12cos2x解析原式=2cos2xcos2x-1+122tanπ4-xsin2π4+x=12-2cos2xsin2x2sinπ4-xcosπ4-x·sin2π4+x=12-12sin2x22cosπ4+xsinπ4+x·sin2π4+x=12cos22xsinπ2+2x=12cos2x.19.已知0<α<π2,π2<β<π且tanα2=12,sin(α+β)=513.(1)分别求cosα与cosβ的值;(2)求tanα-β2的值.答案(1)cosα=35cosβ=-1665(2)-1123解析(1)cosα=cos2α2-sin2α2=cos2α2-sin2α2cos2α2+sin2α2=1-tan2α21+tan2α2=35,∵0<α<π2,∴sinα=45.∵α+β∈(π2,3π2),sin(α+β)=513,∴cos(α+β)=-1213.∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=(-1213)·35+513·45=-1665.(2)∵2cos2β2-1=cosβ=-1665且β2∈(π4,π2),∴cosβ2=7130,∴sinβ2=9130.∴tanβ2=97.∴tanα-β2=tanα2-tanβ21+tanα2tanβ2=-1123.1.已知450°α540°,则12+1212+12cos2α的值是()A.-sinα2B.cosα2C.sinα2D.-cosα2答案A解析原式=12+121+cos2α2=12-12cosα=|sinα2|.∵450°α540°,∴225°α2270°.∴原式=-sinα2.2.已知sin22α+sin2αcosα-cos2α=1,α∈(0,π2),则sinα=________.答案12解析由已知得sin22α+sin2αcosα-(2cos2α-1)=1.∴sin22α+sin2αcosα-2cos2α=0.∴4sin2αcos2α+2sinα·cos2α-2cos2α=0.∴4sin2α+2sinα-2=0.解得sinα=12(负值舍去).3.已知cos(α+π6)-sinα=233,则sin(α-7π6)的值是________.答案23解析∵cos(α+π6)-sinα=32cosα-32sinα=233,∴12cosα-32sinα=23,即cos(α+π3)=23.又sin(α-7π6)=-sin(7π6-α)=sin(π6-α)=sin[π2-(α+π3)]=cos(α+π3)=23.4.已知角A、B、C为△ABC的三个内角,OM→=(sinB+cosB,cosC),ON→=(sinC,sinB-cosB),OM→·ON→=-15.(1)求tan2A的值;(2)求2cos2A2-3sinA-12sinA+π4的值.解析(1)∵OM→·ON→=(sinB+cosB)sinC+cosC(sinB-cosB)=sin(B+C)-cos(B+C)=-15,∴sinA+cosA=-15.①两边平方并整理,得2sinAcosA=-2425.∵-24250,∴A∈(π2,π).∴sinA-cosA=1-2sinAcosA=75.②联立①②,得sinA=35,cosA=-45,∴tanA=-34.∴tan2A=2tanA1-tan2A=-321-916=-247.(2)∵tanA=-34,∴2cos2A2-3sinA-12sinA+π4=cosA-3sinAcosA+sinA=1-3tanA1+tanA=1-3×-341+-34=13.