人教版数学八年级下册第19章第2节第1课时正比例函数同步检测一、选择题1.下列y关于x的函数中,是正比例函数的为()A.y=2xB.y=2xC.y=2xD.y=12x答案:C知识点:正比例函数的图象和性质解析:解答:A.y是x的二次函数,故A选项错误;B.y是x的反比例函数,故B选项错误;C.y是x的正比例函数,故C选项正确;D.y是x的一次函数,故D选项错误;故选C.分析:正比例函数的定义来判断即可得出答案.正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.2.若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是()A.m≠2且n=0B.m=2且n=0C.m≠2D.n=0答案:A知识点:正比例函数的图象和性质解析:解答:∵y关于x的函数y=(m-2)x+n是正比例函数,∴m-2≠0,n=0.解得m≠2,n=0.故选:A.分析:根据正比例函数的定义列出:m-2≠0,n=0.据此可以求得m,n应满足的条件.3.下列问题中,两个变量成正比例的是()A.等腰三角形的面积一定,它的底边和底边上的高B.等边三角形的面积和它的边长C.长方形的一边长确定,它的周长与另一边长D.长方形的一边长确定,它的面积与另一边长答案:D知识点:正比例函数的图象和性质解析:解答:A.等腰三角形的面积一定,它的底边和底边上的高成反比例,故本选项错误;B.等边三角形的面积是它的边长的二次函数,故本选项错误;C.长方形的一边长确定,它的周长与另一边长成一次函数,故本选项错误;D.长方形的一边长确定,它的面积与另一边长成正比例,故本选项正确.故选D.分析:根据正比例函数及反比例函数的定义对各选项进行逐一分析即可.4.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0答案:C知识点:正比例函数的图象和性质解析:解答:A.函数图象经过点(2,4),错误;B.函数图象经过第一、三象限,错误;C.y随x的增大而增大,正确;D.当x>0时,才有y>0,错误;故选C.分析:根据正比例函数的性质对各小题进行逐一判断即可.5.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.-2C.4D.-4答案:B知识点:正比例函数的图象和性质解析:解答:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=-2,故选B分析:直接根据正比例函数的性质和待定系数法求解即可.正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.6.正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0B.k<0C.k>1D.k<1答案:A知识点:正比例函数的图象和性质解析:解答:由图象知:∵函数y=kx的图象经过第一、三象限,∴k>0.故选A.分析:根据正比例函数的性质;当k<0时,正比例函数y=kx的图象在第二、四象限,可确定k的取值范围,再根据k的范围选出答案即可.7.对于函数y=-2kx(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(1k,-k)C.经过一、三象限或二、四象限D.y随着x增大而减小答案:C知识点:正比例函数的图象和性质解析:解答:∵k≠0∴-2k>0∴-2k<0∴函数y=-2kx(k是常数,k≠0)符合正比例函数的形式.∴此函数图象经过二四象限,y随x的增大而减小,∴C错误.故选C.分析:先判断出函数y=-2kx(k是常数,k≠0)图象的形状,再根据函数图象的性质进行分析解答.8.若正比例函数y=kx的图象经过点(-2,3),则k的值为()A.32B.-23C.23D.-32答案:D知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=kx的图象经过点(-2,3),∴-2k=3,解得:k=-32故选D.分析:直接将点的坐标代入解析式即可求得k值.9.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1B.0或1C.±1D.-1答案:A知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=kx的图象在第一、三象限,∴k>0,故选:A.分析:根据正比例函数的性质可得k>0,再根据k的取值范围可以确定答案.10.在正比例函数y=-3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限答案:B知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=-3mx中,函数y的值随x值的增大而增大,∴-3m>0,解得:m<0,∴P(m,5)在第二象限,故选:B.分析:根据正比例函数的性质可得-3m>0,解不等式可得m的取值范围,再根据各象限内点的坐标符号可得答案.11.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定答案:B知识点:正比例函数的图象和性质解析:解答:∵点(2,-3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选B.分析:首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可.12.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1B.m>-1C.m≥-1D.m≤-1答案:A知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=(m+1)x中,y的值随自变量x的值增大而减小,∴m+1<0,解得,m<-1;故选A.分析:根据正比例函数图象与系数的关系列出关于k的不等式m+1<0,然后解不等式即可.13.已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是()A.B.C.D.答案:C知识点:正比例函数的图象和性质解析:解答:将x=-1,y=-2代入正比例函数y=kx(k≠0)得,-2=-k,k=2>0,∴函数图象过原点和一、三象限,故选C.分析:将x=-1,y=-2代入正比例函数y=kx(k≠0),求出k的值,即可根据正比例函数的性质判断出函数的大致图象.14.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>cB.c>b>aC.b>a>cD.b>c>a答案:B知识点:正比例函数的图象和性质解析:解答:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.分析:根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.15.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限答案:D知识点:正比例函数的图象和性质解析:解答:∵k=-1<0,∴一次函数y=-x的图象经过二、四象限,∴一次函数y=-x的图象平分二、四象限.故选D.分析:根据一次函数的性质判断出一次函数y=-x的图象所经过的象限,进而可得出答案.二、填空题16.若直线y=kx(k≠0)经过点(-2,6),则y随x的增大而答案:减小知识点:正比例函数的图象和性质解析:解答:∵直线y=kx(k≠0)经过点(-2,6),∴6=-2•k,∴k=-3<0,∴y随x的增大而减小.故答案为:减小.分析:先把(-2,6)代入直线y=kx,求出k,然后根据正比例函数的性质即可得到y随x的增大而怎样变化.17.正比例函数y=(2m+3)x中,y随x的增大而增大,那么m的取值范围是答案:m>-1.5知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=(2m+3)x中,y随x的增大而增大,∴2m+3>0,解得m>-1.5.故答案为;m>-1.5.分析:先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.18.已知正比例函数y=(4m+6)x,当m时,函数图象经过第二、四象限.答案:m<-1.5知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=(4m+6)x,函数图象经过第二.四象限,∴4m+6<0,解得:m<-1.5,故答案为:m<-1.5分析:当一次函数的图象经过二.四象限可得其比例系数为负数,据此求解.19.请写出一个y随x增大而增大的正比例函数表达式,y=答案:2x知识点:正比例函数的图象和性质解析:解答:∵正比例函数y随x增大而增大,所以正比例函数的k必须大于0.令k=2,可得y=2x,故答案为y=2x.分析:根据正比例函数的意义,可得正比例函数的解析式,根据函数的性质,可得答案.20.在y=5x+a-2中,若y是x的正比例函数,则常数a=答案:2知识点:正比例函数的图象和性质解析:解答:∵一次函数y=5x+a-2是正比例函数,∴a-2=0,解得:a=2.故答案为:2;分析:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a-2=0,解出即可.三、解答题21.已知y=(k-3)x+2k-9是关于x的正比例函数,求当x=-4时,y的值.答案:24知识点:正比例函数的图象和性质解析:解答:当2k-9=0,且k-3≠0时,y是x的正比例函数,故k=-3时,y是x的正比例函数,∴y=-6x,当x=-4时,y=-6×(-4)=24.分析:利用正比例函数的定义得出k的值即可,得到函数解析式,代入x的值,即可解答.22.已知正比例函数y=(m+2)x中,y的值随x的增大而增大,而正比例函数y=(2m-3)x,y的值随x的增大而减小,且m为整数,你能求出m的可能值吗?为什么?答案:-1,0,1.知识点:正比例函数的图象和性质解析:解答:m的可能值为-1,0,1.理由如下:∵正比例函数y=(m+2)x中,y的值随x的增大而增大,∴m+2>0,解得m>-2.∵正比例函数y=(2m-3)x,y的值随x的增大而减小,∴2m-3<0,解得m<1.5.∵m为整数,∴m的可能值为-1,0,1.分析:先根据正比例函数y=(m+2)x中,y的值随x的增大而增大,得出m+2>0,解得m>-2.再由正比例函数y=(2m-3)x,y的值随x的增大而减小,得出2m-3<0,解得m<1.5.又m为整数,即可求出m的可能值.23.已知正比例函数y=kx.(1)若函数图象经过第二、四象限,则k的范围是什么?(2)点(1,-2)在它的图象上,求它的表达式.答案:(1)k<0;(2)y=-2x知识点:正比例函数的图象和性质解析:解答:(1)∵函数图象经过第二、四象限,∴k<0;(2)当x=1,y=-2时,则k=-2,即:y=-2x.分析:(1)根据正比例函数图象的性质,得k<0;(2)只需把点的坐标代入即可计算.24.已知A、B两地相距30km,小明以6km/h的速度从A步行到B地的距离为ykm,步行的时间为xh.(1)求y与x之间的函数表达式,并指出y是x的什么函数;(2)写出该函数自变量的取值范围.答案:(1)正比例函数;(2)0≤x≤5.知识点:正比例函数的图象和性质解析:解答:(1)由题意可得:y=6x,此函数是正比例函数;(2)∵A、B两地相距30km,∴0≤6x≤30,解得:0≤x≤5,即该函数自变量的取值范围是:0≤x≤5.分析:(1)利用行驶的距离与速度与时间的关系得出答案;(2)利用两地的距离得出x的取值范围.25.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.答案:(1)y=-23x(2)(5,0)或(-5,0)知识点:正比例函数的图象和性质解析:解答:如图:(1)∵点A的横坐标为3,且△AOH的面积为3∴点A的纵坐标为-2,点A的坐标为(3,-