1基于单片机的智能温度控制系统设计摘要:传统的加热炉控制系统大多建立在一定的模型基础上,难以保证加热工艺要求。温度控制在热处理工艺过程中,是一个非常重要的环节。控制精度直接影响着产品质量的好坏。本文将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统。单片机在热处理炉温度控制中的应用,对温度控制模块的组成及主要所选器件进行了详细的介绍。并根据具体的要求本文编写了适合本设计的软件程序。关键词:单片机;处理温度控制;电路DesignofIntelligentTemperatureControlSystemBasedMCUAbstract:Thetraditionalheatingfurnacecontrolsystemisbasedonsomemodel,itisdifficulttoguaranteethedemandofheatingprocess.Temperaturecontrolintheheattreatmentprocess,isaveryimportantlink.Thispaperwilladoptfuzzycontrolfuzzycontrolalgorithmtothecontrolsystemofheatingfurnaceintheintelligentfuzzycontrolsystem.Singlechipmicrocomputerinheattreatmentfurnacetemperaturecontrolappliedtothetemperaturecontrolmodule,themaincomponentsandtheselecteddeviceareintroducedindetail.Andaccordingthespecificrequirementsforthedesignofthepaperpreparedbythesoftwareprogram.Keyword:SCM;Temperaturecontrol;Circuit1前言工业生产中使用的热处理设备种类繁多,如窖炉、鼓风炉、烘炉、退火炉、锅炉等。如果按加温方法分类,可将热处理设备分为两大类[1]:(1)电热炉这类设备通过电热元件通电发热而升温,调节加入炉子的电功率则改变炉内的温度。电功率调节一般采用接触器通断控制、晶闸管移相触发或通断控制。这一类设备在工厂占有相当大的比例。(2)燃料炉这类设备通过燃烧燃料发热而升温,调节加入炉子的燃料量则改变炉的温度。如锅炉、焦炉等。常用燃料有煤、煤气、重油等。燃料量的调节通常利用阀门、翻板等实现。这类设备在工厂中也占有较大比例2热处理设备虽然种类繁多,控制方法各有差异,但对他们采用微机控制时,控制原理和方法是基本相同的。电炉是热处理生产中应用最广的加热设备,通过布置在炉内的电热元件将电能转化为热能,借助辐射与对流的传热方式加热工件。通常可用以下公式定性描述02tKVXdtdXT(1)式中X——电炉内温升(指炉内温度与室温温差)K——放大系数t——加热时间T——时间系数V——控制电压τ0——纯滞后时间但在实际热力过程中,由于被加热金属的导热率、装入量以及加热温度等因素的不同,直接影响着K、T、τ0等参数的变化,因此电炉本身具有很大的不确定[2]。温度控制在热处理工艺过程中,是一个非常重要的环节。控制精度直接影响着产品质量的好坏。根据不同的目的,将材料及其制件加热到适宜的温度。1.1研究目的与意义电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,如果说微型计算机的出现使现代的科学研究得到了质的飞跃,那么单片机技术的出现则是给现代工业控制测控领域带来了一次新的革命。目前,单片机在工业控制系统诸多领域得到了极其广泛的应用。特别是其中的C51系列的单片机的出现,具有更好的稳定性,更快和更准确的运算精度,推动了工业生产,影响着人们的工作和学习。80年代以来,自动控制系统被控对象日益复杂,它不仅表现在控制系统具有多输入一多输出的强藕合性、参数时变性和严重的非线性特征,更突出的是从系统对象所能获得的知识信息量相对地减少,以及与此相反地对控制性能的要求却日益高度化。然而,正如Zadeh教授于1973年所指出的:“当一个系统复杂性增大时,人们能使它精确化的能力将降低,当达到一定的闭值时,复杂性和精确性将相互排斥”(即“不相容原理”)。也就是说,在多变量、非线性、时变的大系统中,要想精确地描述复杂对象与系统的任何物理现象和运动状态,实际上是不可能的。关键的是如何使准确和简明之间取得平衡,而使问题的描述具有意义。1.2研究内容研究内容主要分为:研究单片机智能温度控制的工作原理。单片机智能温度控制系3统整体方案设计,对系统各个组成部分进行详细设计。选择适当的单片机等应用元件。分析所选元件的特性,以满足温度系统的要求。2系统硬件电路设计电炉是热处理生产中应用最广的加热设备,其本身是一个较为复杂的被控对象,虽然可用以下模型定性描述它1TsKesGs(2)式中K--放大系数T--时间系数τ--纯滞后时间但在实际热力过程中,由于实际工况的复杂性(加工工件的材质、初温、升温、幅度规格、装炉量以及电气环境等因素),使得上述数学模型偏离实际情况相当严重,本文将在具有在线自调整功能模糊自整定PID控制器基础上设计一个炉温控制系统,以期较理想地解决被加热物件透烧过程的测量与控制。2.1系统的总体结构控制系统组成框图如图2所示。图2电炉温度控制系统Fig2Electricfurnacetemperaturecontrolsystem2.2温度检测电路温度检测是温度控制系统的一个重要的环节,直接关系到系统性能。在微机温度控4制系统中,温度的检测不仅要完成温度到模拟电压量的转换,还要将电压转换为数值量送计算机。其一般结构如图10所示。图3温度数字检测的一般结构Fig3Generalstructureofdigitaltemperaturedetection2.2.1温度传感器温度传感器将测温点的温度变换为模拟电压,其值一般为mV级,需要放大为满足模/数转换要求的电压值。微机通过控制把电路电压送到模/数转换器进行模/数转换,得到表示温度的电压数字量,再用软件进行标度变换与误差补偿,得到测温点的实际温度值。温度传感器种类繁多,但在微机温度控制系统中使用得传感器,必须是能够将非电量变换成电量得传感器,此次设计中选用的是热电偶传感器,热电偶传感器是工业温度测量中应用最广泛得一种传感器,具有精确度高、测量范围广、构造简单、使用方便等优[7]。热电偶是由两种不同材料得导体A和B连接在一起构成得感温元件,如图4所示。A和B得两个接点1和2之间穿在温度差时,回路中便产生电动势,形成一定大小得电流,这种现象称为热电效应,也叫温差效应。热电偶就是利用这个原理测量温度的[5]。图4热电偶测温原理图Fig4Schematicdiagramofthethermocoupletemperaturemeasurement2.2.2测量放大器的组成测量放大器的基本电路如图5所示。5图5测量放大器的原理图Fig5Schematicdiagramofmeasuringamplifier测量放大器由三个运算放大器组成,其中A1、A2两个同相放大器组成前级,为对称结构,输入信号加在A1、A2的同相输入端从而具有高抑止共模干扰的能力和高输入阻抗。差动放大器A3为后级,它不仅切断共模干扰的传输,还将双端输入方式变换成单端输出方式,适应对地负载的需要。测量放大器的放大倍数用下面公式计算GGIRRRRRRUUG'112301(3)式中,GR为用于调节放大倍数的外接电阻,通常GR采用多圈电位器,并靠近组件,若距离较远,应将联线胶合在一起,改变GR可使放大倍数在1~1000范围内调节。2.2.3热电偶冷端温度补偿方法用热电偶测量温度时,热电偶的工作端(热端)被放置在待测温场中,而自由端(冷端)通常被放在0℃的环境中。若冷端温度不是0℃,则会产生测量误差,此时要进行冷端补偿。冷端补偿方法较多,在本次的设计中我们采用的冷端温度补偿为电桥式冷端补[8]。对与冷端温度补偿器,在工业上采用如图6所示补偿电桥的冷端补偿电路。图6热电偶冷端温度补偿电桥Fig6Thermocouplecoldendtemperaturecompensationbridge图中所示的补偿电桥桥臂电阻R1、R2、R3和RCu通常与热电偶的冷端置于相同的环境中。取1321RRR,用锰铜线绕成;RCu是用铜导线绕制成的补偿电阻。RS是供桥电源E的限流电阻,RS由热电偶的类型决定。若电桥在20℃时处于平衡状态。当冷端温度升高时,RCu补偿电阻将随之增大,则电桥a、b两点间的电压Vab也增大,此时热电偶温差电势却随冷端温度升高而降如果Vab的增加量等于热电偶温差电势的减小量,则热6电偶输出电势VAB的大小将保持不变,从而达到冷端补偿的目[9]。2.3多路开关的选择在本次的设计中,我们的温度传感器有5个,因此,我们采用了一种16的多路开关,以实现对5个温度传感器的巡回检测。CC4067是单片.CMOS.16通道.模拟多路转换器。该电路包括16选1的译码器和译码器的输出分别控制的16个CMOS双向开关,通道的输出状态由电路外部输入的地址A.B.C.D所决定。CC4067可用模拟信号或数字信号去控制模拟开关的接通或断开,具有低的导通电阻和高的断开电阻,所控制的模拟信号最大峰值为15V,而数字信号的幅度3V-5V.CC4067芯片具有禁止端inh。当禁止时,inh=1,这时所有的双向开关均不接通,在公共端呈现高阻抗。(1)主要性能CMOS工艺制造;直接驱动DTL/TTL/CMOS电平;单路、16选1模拟多路转换器;具有双向转换功能;单电源供电;标准24引脚DIP封装;功耗:1.5mW;开关接通电阻:180欧(typ);开关接通时间:1.5us(max);开关断开时间:1us(max).(2)CC4067引脚图示与图7。242322212019181716151413Vdd89101112131415inhCD123456789101112OUT/ININ/OUT76543210ABVssIN/OUT图7CC4067引脚图Fig7TheCC4067pindiagram(3)CC4067功能框图如图8所示。7图8CC4067功能框图Fig8TheCC4067functionblockdiagram2.4A/D转换器的选择及连接5G14433是我国制造的31/2位模/数变换器,是目前市场上广泛流行的最典型的双积分模/数变换器。该芯片具有抗干扰性能好、转换精度高、自动校零、自动极性输出、自动量程控制信号输出、外接元件少、价格便宜等特点。因此广泛应用在低速微控制器应用系统,智能仪表和数字三用表等领域。5G14433与国外型号MC14433兼[10]。5G14433的外部连接电路,尽管5G14433外部连接元件很少,但为使其工作于最佳状态,也必须注意外部电路的连接和外接元件的选择,其实际连接电路如图9所示。为了提高电源抗干扰的能力,正,负电源分别通过去耦电容0.047uF、0.02uF与Vss(VAG)相连。图中DU端和EOC端短接,以选择连续转换方式,使每一次转换的结果都输出。图9外部连接电路Fig9Theexternalconnectioncircuit8当C1=0.1uF,VDD=5V,fCLK=66KHz时,若Vxmax=+2V,则R1=480KΩ;若Vxmax=+200mV,则R1=28KΩ。外接失调补偿电容固定为0.1uF。外接时钟电阻Rc=470KΩ时,fLCK≈66KHz;当Rc=200KΩ时,fLCK=140KHz。实际电路中一般取Rc=300KΩ。2.5单片机系统的扩展2.5.1系统扩展概述MCS—51系列单片机的功能较强,从一定意义上说,一块单片机就相当于一台单片机的功能。这就使得在智能仪器、仪表、小型检测及控制系统、家用电器中