知识拓展:钟表上的角度问题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1/2钟表上的角度问题在学习过程中,我们常会遇到与钟表上的角度有关的数学问题,部分学生在解决这类问题时感到困难大,若能仅从时针、分针转动所成的角度入手解决则较容易.我们知道,时针、分针转动一周都经过12大格或60小格.因此,每小时时针转动30°,每分钟分针转动6°.这样我们可以分别计算时针、分针转动的角度,然后求解.下面就常见的类型加以说明.一、求时针、分针的夹角.例1在5点整时,时针与分针所成的夹角是多少度?解:5点整时,时针转过了30°×5=150°,分针转过为0°,其度差为150°-0°=150°∴时针与分针的夹角是150°.例26点40分时,时针与分针的夹角是多少度?解:6点40分时,时针转过了(6+6040)×30°=200°,分针转过了40×6°=240°,其度差为240°-200°=40°,∴时针与分针的夹角是40°.例31点54分时,时针与分针的夹角是多少度?解:1点54分时,时针转过了(1+6054)×30°=57°,分针转过了54×6°=324°,其度差为324°-57°=267°,(大于180°)∴时针与分针的夹角是360°-267°=93°.二、求时针与分针的重合时间.2/2例412点后,时针与分针何时首次重合?解:时针与分针重合其度差为0°,若设x时y分时针与分针重合,则时针转了30)60(yx,分针转了6y度,则有30(x+60y)-6y=0.整理得y=1160x,当x=1时,得y=1160.∴时针与分针首次重合为1时1160分.例5在3点至4点间,时针与分针何时重合?解:设3点y分时,时针与分针重合,则时针转过(3+60y)×30度,分针转过6y度,∴06)603(30yy。解得y=11180,所以时针与分针在3点11180分重合.三、求时针、分针成一直线的时间.例62点后,时针与分针最快要多长时间可成一条直线?解:设再经过y分钟,时针与分针成一条直线,则时针转过23060yy度,分针转过6y度,故有6y-2y=180.解得y=11360,再经过11360分,时针与分针成一条直线.

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功