电磁学压轴题汇集24、在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响)。⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图)。求入射粒子的速度。24、⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得:211/2vmqBvd解得:12qBdvm⑵设O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。由几何关系得:/OQO//OORRd由余弦定理得:2/22//()2cosOORRRR解得:/(2)2(1cos)dRdRRd设入射粒子的速度为v,由2/vmqvBR解出:(2)2(1cos)qBdRdvmRd24.(17分)如图所示,在xOy平面的第一象限有一匀强电场,电场的方向平行于y轴向下;在x轴和第四象限的射线OC之间有一匀强磁场,磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场。质点到达x轴上A点时,速度方向与x轴的夹角为φ,A点与原点O的距离为d。接着,质点进入磁场,并垂直于OC飞离磁场。不计重力影响。若OC与x轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。RAOPDQφRAOPDQφO/R/xOyEBAφφC24.质点在磁场中偏转90º,半径qBmvdrsin,得mqBdvsin;由平抛规律,质点进入电场时v0=vcosφ,在电场中经历时间t=d/v0,在电场中竖直位移221tan2tmqEdh,由以上各式可得cossin32mdqBE25.(18分)如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直。一质量为m、电荷量为-q(q0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场。粒子在磁场中的运动轨迹与y轴交于M点。已知OP=l,OQ=23l。不计重力。求:⑴M点与坐标原点O间的距离;⑵粒子从P点运动到M点所用的时间。25.⑴MO=6l⑵qEmlt212333、(2009年宁夏卷)25.如图所示,在第一象限有一均强电场,场强大小为E,方向与y轴平行;在x轴下方有一均强磁场,磁场方向与纸面垂直。一质量为m、电荷量为-q(q0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场。粒子在磁场中的运动轨迹与y轴交于M点。已知OP=l,lOQ32。不计重力。求(1)M点与坐标原点O间的距离;(2)粒子从P点运动到M点所用的时间。【解析】(1)带电粒子在电场中做类平抛运动,在y轴负方向上做初速度为零的匀加速运动,设加速度的大小为a;在x轴正方向上做匀速直线运动,设速度为0v,粒子从P点运动到Q点所用的时间为1t,进入磁场时速度方向与x轴正方向的夹角为,则qEam①012yta②001xvt③vφOyEBAφCφdhxxyOPQMv0其中0023,xlyl。又有10tanatv④联立②③④式,得30因为MOQ、、点在圆周上,=90MOQ,所以MQ为直径。从图中的几何关系可知。23Rl⑥6MOl⑦(2)设粒子在磁场中运动的速度为v,从Q到M点运动的时间为2t,则有0cosvv⑧2Rtv⑨带电粒子自P点出发到M点所用的时间为t为12+ttt⑩联立①②③⑤⑥⑧⑨⑩式,并代入数据得32+12mltqE⑾25.(18分)如图所示,在0≤x≤a、o≤y≤2a2a范围内有垂直手xy平面向外的匀强磁场,磁感应强度大小为B。坐标原点0处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~090范围内。己知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。求最后离开磁场的粒子从粒子源射出时的(1)速度的大小:(2)速度方向与y轴正方向夹角的正弦。【答案】(1)6(2)2aqBvm(2)6-6sin=10命题点10:带电粒子在组合场中的运动——电场中的加速、偏转;磁场中的圆周运动07—25.(18分)飞行时间质谱仪可以对气体分子进行分析。如图所示,在真空状态下,脉冲阀P喷出微量气体,经激光照射产生不同价位的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的偏转控制区,到达探测器。已知元电荷电量为e,a、b板间距为d,极板M、N的长度和间距均为L。不计离子重力及进入a板时的初速度。PSdLLMNab探测器激光束⑴当a、b间的电压为U1时,在M、N间加上适当的电压U2,使离子到达探测器。请导出离子的全部飞行时间与比荷K(K=ne/m)的关系式。⑵去掉偏转电压U2,在M、N间区域加上垂直于纸面的匀强磁场,磁感应强度B,若进入a、b间所有离子质量均为m,要使所有的离子均能通过控制区从右侧飞出,a、b间的加速电压U1至少为多少?25、解:⑴由动能定理:2112neUmvn价正离子在a、b间的加速度:11neUamd在a、b间运动的时间:1112vmtaneUd在MN间运动的时间:2Ltv离子到达探测器的时间:t=t1+t2=122KULd⑵假定n价正离子在磁场中向N板偏转,洛仑兹力充当向心力,设轨迹半径为R,由牛顿第二定律得:2vnevBmR离子刚好从N板右侧边缘穿出时,由几何关系:R2=L2+(R-L/2)2由以上各式得:2212532neLBUm当n=1时U1取最小值22min2532eLBUm08—25.(18分)【2010示例】两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力)。若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且002mtqB,两板间距202010mEhqB。(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。(2)求粒子在板板间做圆周运动的最大半径(用h表示)。(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。解法一:(1)设粒子在0~t0时间内运动的位移大小为21012sat①0qEam②又已知200200102,mEmthqBqB联立①②式解得115sh③(2)粒子在t0~2t0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。设运动速度大小为v1,轨道半径为R1,周期为T,则10vat④21101mvqvBR⑤联立④⑤式得15hR⑥又02mTqB⑦即粒子在t0~2t0时间内恰好完成一个周期的圆周运动。在2t0~3t0时间内,粒子做初速度为v1的匀加速直线运动,设位移大小为2210012svtat⑧解得235sh⑨由于s1+s2<h,所以粒子在3t0~4t0时间内继续做匀速圆周运动,设速度大小为v2,半径为R2210vvat⑩22202mvqvBR○11解得225hR○12由于s1+s2+R2<h,粒子恰好又完成一个周期的圆周运动。在4t0~5t0时间内,粒子运动到正极板(如图1所示)。因此粒子运动的最大半径225hR。(3)粒子在板间运动的轨迹如图2所示。09—25.(18分)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l。第一、四象限有磁感应强度为B的匀强磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子。在0~3t0时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场。上述m、q、l、t0、B为已知量。(不考虑粒子间相互影响及返回板间的情况)⑴求电压U0的大小。⑵求t0/2时刻进入两板间的带电粒子在磁场中做圆周运动的半径。⑶何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。yxOBPQv0llUPQtOU0-U0t02t03t0点评:本题命题点仍为带电粒子在周期性变化的电场和分立的磁场中的运动问题。创新之处在于带电粒子在磁场中的运动情况由于进入磁场的位置不同而有所不同,这样就造成了运动情况的多样性,从而存在极值问题。很好的考查了考生综合分析问题的能力和具体问题具体分析的能力,同时粒子运动的多样性(不确定性)也体现了对探究能力的考查。解析:(1)0t时刻进入两极板的带电粒子在电场中做匀变速曲线运动,0t时刻刚好从极板边缘射出,在y轴负方向偏移的距离为12l,则有0UEl①,Eqma②201122lat③联立以上三式,解得两极板间偏转电压为2020mlUqt④。(2)012t时刻进入两极板的带电粒子,前012t时间在电场中偏转,后012t时间两极板没有电场,带电粒子做匀速直线运动。带电粒子沿x轴方向的分速度大小为00lvt⑤带电粒子离开电场时沿y轴负方向的分速度大小为012yvat⑥带电粒子离开电场时的速度大小为22xyvvv⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,则有2vBvqmR⑧联立③⑤⑥⑦⑧式解得052mlRqBt⑨。(3)02t时刻进入两极板的带电粒子在磁场中运动时间最短。带电粒子离开磁场时沿y轴正方向的分速度为'0yvat⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为,则0'tanyvv,联立③⑤⑩式解得4,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为22,所求最短时间为min14tT,带电粒子在磁场中运动的周期为2mTBq,联立以上两式解得min2mtBq。【考点】带电粒子在匀强电场、匀强磁场中的运动命题特点:以带电粒子在组合场中的运动为背景,以力学方法在电磁学中的应用为考查重点,通过周期性变化的电场、磁场所导致的带电粒子运动的多样性,很好的体现了对探究能力的考查。连续三年均涉及物理量关系的推导,对文字运算能力要求较高。演变趋势:对探究能力的考查正逐步由实验题扩展到计算题,且多以对物理量的不确定性及运动的多样性为考查重点。2010——25.(18分)如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里。一质量为m、带电量+q、重力不计的带电粒子,以初速度1v垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动。已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推。求⑴粒子第一次经过电场子的过程中电场力所做的功1W。⑵粒子第n次经芝电声时电场强度的大小nE。⑶粒子第n次经过电场子所用的时间nt。⑷假设粒子在磁场中运动时,电场区域场强为零。请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标明坐标刻度值)。【答案】(1)2132mv(2)21(21)2nmvqd(3)12(21)dnv(4)见解析【解析】带电粒子在磁场中做匀速圆周运动,由2vqvBmr得mvrqB则v1:v2:…:vn=r1:r2:…:rn=1:2:…:n(1)第一次过电场,由动能定理得22212111132