第3单元运动图象追及与相遇问题夯实必备知识对应学生用书第13页必备知识直线运动的图象[基础梳理]1.xt图象(1)图象的意义反映了做直线运动的物体_______随______变化的规律.(2)两种特殊的xt图象①xt图象是一条平行于时间轴的直线,说明物体处于______状态.②xt图象是一条倾斜直线,说明物体处于________________状态.位移时间静止匀速直线运动(3)xt图象中的“点”“线”“斜率”“截距”的意义①点:两图线交点,说明两物体_______.②线:表示研究对象的变化过程和规律.③斜率:xt图象的斜率表示______的大小及方向.④截距:纵轴截距表示t=0时刻的初始_______,横轴截距表示位移为零的时刻.2.vt图象(1)图象的意义反映了做直线运动的物体的_______随_______变化的规律.相遇速度位移速度时间(2)两种特殊的vt图象①若vt图象是与横轴平行的直线,说明物体做_______________.②若vt图象是一条倾斜的直线,说明物体做_________________.(3)vt图象中的“点”“线”“斜率”“截距”“面积”的意义①点:两图线交点,说明两物体在该时刻的_________相等.②线:表示速度的变化过程和规律.③斜率:表示__________的大小及方向.④截距:纵轴截距表示t=0时刻的_________,横轴截距表示速度为零的时刻.⑤面积:数值上表示某段时间内的________.匀速直线运动匀变速直线运动速度加速度初速度位移[即时训练]物体A、B的xt图象如图所示,由图可知()A.从第3s起,两物体运动方向相同,且vA>vBB.两物体由同一位置开始运动,但物体A比B迟3s才开始运动C.在5s内两物体的位移相同,5s末A、B相遇D.5s内A、B的平均速度相等解析:xt图象的斜率的大小表示物体运动的速度大小,斜率的正负表示物体运动的方向,由题图可表,A正确;B物体的出发点在离原点5m处,A物体的出发点在原点处,B错误;物体B在5s内的位移为10m-5m=5m,物体A在3s~5s内的位移为10m,故C、D均错误.答案:A精研疑难要点要点一xt图象和速度vt图象的理解和应用对应学生用书第14页xt图象与vt图象的比较上图和下表是形状一样的图线在xt图象与vt图象中的比较.xt图象vt图象①表示物体做匀速直线运动(斜率表示速度).①表示物体做匀加速直线运动(斜率表示加速度a).②表示物体静止.②表示物体做匀速直线运动.③表示物体静止.③表示物体静止.④表示物体向反方向做匀速直线运动;初位移为x0.④表示物体做匀减速直线运动;初速度为v0.⑤交点的纵坐标表示三个运动质点相遇时的位移.⑤交点的纵坐标表示三个运动质点的共同速度.⑥0~t1时间内物体位移为x1.⑥t1时刻物体速度为v1(图中阴影部分面积表示质点在0~t1时间内的位移).[例1](2013年大纲版全国卷)将甲乙两小球先后以同样的速度在距地面不同高度处竖直向上抛出,抛出时间间隔为2s,他们运动的vt图象分别如直线甲、乙所示.则()A.t=2s时,两球的高度差一定为40mB.t=4s时,两球相对于各自抛出点的位移相等C.两球从抛出至落地到地面所用的时间间隔相等D.甲球从抛出至达到最高点的时间间隔与乙球的相等[思维流程]第一步:抓信息关键点①先后以同样的速度;②在距地面不同高度处;③竖直向上抛出;④看图象第二步:建立物理模型作图第三步:找解题突破口从图象入手,做出运动草图第四步:形成解题思路从图象入手,做出运动草图,逐项分析[解析]由于甲乙两小球先后以同样的速度在距地面不同高度处竖直向上抛出,t=2s时,两球的高度相差不一定为40m,两球从抛出至落到地面所用的时间间隔不相等,选项A、C错误.根据速度图象与横轴所夹“面积”表示位移可知,t=4s时,两球相对于各自的抛出点的位移相等,选项B正确.由于甲乙两小球先后以同样的速度竖直向上抛出,甲球从抛出至到达最高点的时间间隔与乙球相等,选项D正确.[答案]B、D1.某物体运动的vt图象如图所示,则下列说法正确的是()A.物体在第1s末运动方向发生改变B.物体在第2s内、第3s内的加速度是相同的C.物体在第2s末返回出发点D.物体在第5s时离出发点最远,且最大位移为0.5m解析:2s末运动方向发生改变,A错;在第2、3s内图象斜率相同,加速度相同,B对;2s末和6s末离出发点最远,C、D错,正确选项为B.答案:B要点二追及与相遇问题1.分析“追及”“相遇”问题,其实质就是分析两个物体在相同时间内能否到达相同位置的问题.具体存在两种类型:第一类:速度大的物体甲做减速运动追速度小的物体乙(如匀速直线运动).当二者速度相等时,甲的位移仍小于乙的位移,则一定追不上,此时两者之间有最小距离(速度相等是二者有最小距离的临界条件).若甲、乙速度相等时,甲、乙处于同一位置,则恰好追上,也是二者不发生相撞的临界条件.若二者速度相等时,甲的位移大于乙的位移,则一定能追上(此时甲已经在乙的前方,在这种情况下乙还会追上甲一次,其间二者速度相等时距离有最大值).第二类:速度小的物体甲做加速运动追前面速度大的物体乙.这种类型一定能追上,当二者速度相等时,二者之间有最大距离.2.相遇问题同向运动的物体追上时即相遇.相向运动的物体,当各自发生的位移大小之和等于开始两物体间的距离时即相遇.3.解题的基本思路分析两物体的运动过程⇒画运动示意图⇒找出两物体的位移关系⇒列位移方程(1)紧抓“一图三式”,即过程示意图、时间关系式、速度关系式和位移关系式;处理追及问题一定要画出位移示意图,若画不出运动示意图,就不要解题(即“审题先画图,无图不做题”).(2)审题时要紧抓关键字眼,充分挖掘隐含条件,如“刚好”“恰好”“最远”“至少”等,往往对应于一个临界状态,由此找出满足的临界条件.(3)若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动.4.解答追击、相遇问题的常用方法画出两个物体运动示意图,分析两个物体的运动性质,找出临界状态,确定它们位移、时间、速度三大关系.(1)基本公式法——根据运动学公式,把时间关系渗透到位移关系和速度关系中列式求解.(2)图象法——正确画出物体运动的vt图象,根据图象的斜率、截距、面积的物理意义结合三大关系求解.(3)相对运动法——巧妙选择参考系,简化运动过程、临界状态,根据运动学公式列式求解.(4)数学方法——根据运动学公式列出数学关系式(要有实际物理意义)利用二次函数的求根公式中Δ判别式求解.[例2]A、B两列火车在同一轨道上同向行驶,A车在前,其速度vA=10m/s,B车在后,其速度为vB=30m/s.因大雾能见度低,B车在距A车700m时才发现前方有A车,这时B车立即刹车,但要经过1800mB车才能停止.问A车若按原速度前进,两车是否会相撞?说明理由.[思维流程]第一步:抓信息关键点①同一轨道上同向行驶,②A车在前,其速度vA=10m/s,B车在后,其速度为vB=30m/s.第二步:建立物理模型A车在前做匀速直线运动,B车在后做匀减速直线运动.第三步:找解题突破口B车立即刹车,但要经过1800mB车才能停止,可以求出其加速度.第四步:形成解题思路先求加速度,再看B车减速至与A车速度相等时两车的位移.[解析]根据两车的运动性质画出它们的运动过程示意图(草图),如图所示.由题意可知,两车不相撞的速度临界条件是B车减速到与A车的速度相等(速度关系).aB=v2B2x=0.25m/s2,B车减速至vA=10m/s的时间t=80s,在这段时间(时间关系)内A车的位移为:xA=vAt=800m,则在这段时间内B车的位移为:xB=vBt-12aBt2=1600m,两车的位移关系:xB=1600m>xA+x0=1500m,所以A、B两车在速度相同之前已经相撞.[答案]会相撞,理由见解析2.交通路口是交通事故的多发地,驾驶员到交通路口时也格外小心.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度均为v0=8m/s.当两车快要到十字路口时,甲车司机看到绿灯已转换成了黄灯,于是紧急刹车(反应时间忽略不计),乙车司机为了避免与甲车相撞也紧急刹车,但乙车司机反应较慢(反应时间为t=0.5s).已知甲车紧急刹车时制动力为车重的0.5倍,乙车紧急刹车时制动力为车重的25,g=10m/s2.(1)若甲车司机看到黄灯时车头距警戒线6.5m,他采取了上述措施后是否会闯红灯?(2)为保证两车在紧急刹车过程中不相撞,甲、乙两车在行驶过程中应至少保持多大距离?解析:(1)甲车紧急刹车的加速度为a1=f1m1=0.5m1gm1=5m/s2,这段时间滑行距离s1=v202a1=822×5m=6.4m,6.4m<6.5m,甲车不会闯红灯.(2)乙车紧急刹车的加速度为a2=f2m2=0.4m2gm2=4m/s2,乙车刹车过程中滑行的距离s2=v202a2=822×4m=8m,乙车在司机反应时间内的运动位移s3=v0t=8×0.5m=4m,Δs=s2+s3-s1=5.6m.答案:(1)不会(2)5.6m提升学科素养“方法技巧专题化”系列之二,,数形转化巧解物体运动问题对应学生用书第16页新高考体现了思维创新,处理方法灵活,更多地与数学知识相结合分析物理问题的特点.公式和图象都可以用来表示物理量间的关系,也同样都是解决问题的方法,在解题时灵活运用“数”与“形”的转化,往往能开拓解题思路,使问题化难为易,化繁为简.[典例]摩托车在平直公路上从静止开始启动,a1=1.6m/s2,稍后匀速运动,然后减速,a2=6.4m/s2,直到停止,共历时130s,行程1600m.试求:(1)摩托车行驶的最大速度vm;(2)若摩托车从静止启动,a1、a2不变,直到停止,行程不变,所需最短时间为多少?[解析](1)整个运动过程分三个阶段:匀加速运动、匀速运动、匀减速运动,作摩托车的vt图象如图所示.由运动学公式v2-v20=2ax得:v2m2a1+v2m2a2+130s-vma1-vma2vm=1600m,解得:vm=12.8m/s.(2)作摩托车运动的vt图象如图所示,由图象可知,不同的图形与横轴所围成的面积均为“1600m”.匀速运动的时间越短,运动的总时间就越短.由图象可以证明:当摩托车先以a1匀加速运动,速度达到vm′时,紧接着以a2匀减速运动直到停止时,行程不变,而时间最短,如右图所示,设最短时间为tmin,则tmin=vm′a1+vm′a2,vm′22a1+vm′22a2=1600m,由上述二式解得:vm′=64m/s,故tmin=50s,即最短时间为50s.[答案](1)12.8m/s(2)50s[题后悟道]数形结合是分析物理问题的重要方法,在求解物理计算题时,只要能够体现运动情景的,都可以用构建图形的思想,再用数形结合的方法就可直观看出运动物体的各物理量之间的关系.两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行驶的距离为s,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为()A.sB.2sC.3sD.4s解析:依题意可作出两车的vt图象如图所示,从图中可以看出两车在匀速行驶时保持的距离至少应为2s,即B选项正确.答案:B