当前位置:首页 > 中学教育 > 初中教育 > 一元一次不等式与一元一次不等式组典型例题
..一元一次不等式与一元一次不等式组的解法一、知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“”、“”、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果ab,那么__acbc(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0abc,那么__acbc(或___abcc)(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果ab,0c那么__acbc(或___abcc)说明:常见不等式所表示的基本语言与含义还有:①若a-b>0,则a大于b;②若a-b<0,则a小于b;③若a-b≥0,则a不小于b;④若a-b≤0,则a不大于b;⑤若ab>0或0ab,则a、b同号;⑥若ab<0或0ab,则a、b异号。任意两个实数a、b的大小关系:①a-bOab;②a-b=Oa=b;③a-bOab.不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c。4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.注:其标准形式:ax+b<0或ax+b≤0,ax+b>0或ax+b≥0(a≠0).5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.例:131321xx解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一..次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.8.不等式组解集的确定方法,可以归纳为以下四种类型(设ab)(重难点)不等式组图示解集xaxbbaxa(同大取大)xaxbbaxb(同小取小)xaxbbabxa(大小交叉取中间)xaxbba无解(大小分离解为空)9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解类型一:不等式性质1.若,则的大小关系为()A.B.C.D.不能确定2.若xy,则下列式子错误的是()A.33xyB.33xyC.32xyD.33xy类型二:比较大小1.若01x,则21xxx,,的大小关系是()A.21xxxB.21xxxC.21xxxD.21xxx2.实数在数轴上对应的点如图所示,则,,的大小关系正确的是()1.B.C.D...类型三:解一元一次不等式1.不等式的解集为.2.解不等式:2(x+)-1≤-x+9类型四:不等式中字母的取值范围1.关于x的方程xkx21的解为正实数,则k的取值范围是2.已知2ab.(1)若3≤b≤1,则a的取值范围是____________.(2)若0b,且225ab,则ab____________.3.关于x的不等式2x-a≤-1的解集如图2所示,则a的取值是()。A、0B、-3C、-2D、-1类型五:解一元一次不等式组1.不等式组3(2)4121.3xxxx≥,的解集是.2.解不等式组:3221317.22xxxx,≤类型六:解一元一次不等式组及解集在数轴上的表示1.不等式组2201xx≥的解集在数轴上表示为()A.B.C.D.2.不等式组213351xx≤的解集在数轴上表示正确的是()01-1学子教育http:/blog.sina.com.cn/caoyun-2(图2)123-10-2123-10-2123-10-2123-10-2120A.B.120C.120D.120..类型七:不等式组的整数解1.不等式组2752312xxxx的整数解是.2.不等式组26623212xxxx的整数解是()A.1,2B.1,2,3C.331xD.0,1,23.解不等式组并写出该不等式组的最大整数解.4.解不等式组并求出所有整数解的和.类型八:已知不等式组的整数解,求字母的取值范围1.已知关于x的不等式组0521xax≥,只有四个整数解,则实数a的取值范围是.2.若不等式组有实数解,则实数的取值范围是()A.B.C.D.3.若不等式组的解集为,则a的取值范围为()A.a>0B.a=0C.a>4D.a=44.如果一元一次不等式组3xxa的解集为3x.则a的取值范围是()A.3aB.a≥3C.a≤3D.3a类型九:利用不等式组的解集求值..1.如果不等式组2223xaxb≥的解集是01x≤,那么ab的值为.2.若不等式组220xabx的解集是11x,则2009()ab.3.若不等式组,的整数解是关于x的方程的根,求a的值4.已知不等式组的解集为-1<x<2,则(m+n)2008=_______________.类型十:不等式应用题1:一般不等式应用题分配问题:1.把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?三工程问题1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?四价格问题1商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?五其他问题1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数..2.一次知识竞赛共有15道题。竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题?六方案选择与设计1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:原料维生素C及价格甲种原料乙种原料维生素C/(单位/千克)600100原料价格/(元/千克)84现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,(1)设需用x千克甲种原料,写出x应满足的不等式组。(2)按上述的条件购买甲种原料应在什么范围之内?2.红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种工人多少时,可使每月所付的工资最少?此时每月工资为多少元?3.某工厂接受一项生产任务,需要用10米长的铁条作原料。现在需要截取3米长的铁条81根,4米长的铁条32根,请你帮助设计一下怎样安排截料方案,才能使用掉的10米长的铁条最少?最少需几根?4.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利4.8%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%作保管费,问:(1)当该批产品投入资金是多少元时,方案一和方案二的获利是一样的?(2)按所需投入资金的多少讨论方案一和方案二哪个获利多。
本文标题:一元一次不等式与一元一次不等式组典型例题
链接地址:https://www.777doc.com/doc-5872658 .html