2012新疆维吾尔自治区高中数学竞赛高二试题卷时间120分钟总分:150分第一题:选择题(有6小题,每小题5分总30分)1.设,12zyx且2zyx,则乘积cossincosxyz的最大值减去两倍的最小值为:()A.83B.43C.23D.32.过抛物线焦点下的直线交抛物线与P,Q两点,P,Q的垂直平分线交抛物线的对称轴于R,则RFQP的值为:()A.5B.4C.3D.23.已知正四棱柱的对角线长为62,且对角线与底面所成角的余弦值为32则该正四棱柱的体积为:()A.2B.4C.8D.164.袋中盛有3个白球和若干个红球,现在从中任取2个求,若取的白球个数的期望值等于43,则袋中红球的个数为:()A.1B.3C.5D.75.已知复数zxyi(1,,2xyRx),满足1zx那么Z在复平面上对应点,(,)xy的轨迹是:()A.圆B.抛物线C.椭圆D.双曲线6.在正方体的八个顶点中任取四个顶点,这四个点可以连成四面体的概率为:()A.3527B.3528C.3529D.76第二题:填空题(共有6小题每小题9分总54分)7.在数列na中,已知183a,nnaa31,则1a=__________.8.当4x时,函数11xxy的最小值=__________.9.若直线l经过P(1,-3),它与两坐标轴围成等腰直角三角形,则l的方程是:______________________________.第4页,共8页10.若方程16222kykx表示的曲线不是双曲线,则k的取值范围是:__________.11.正四面体内切球半径为2,则此正面体体积为:__________.12.将一骰子抽掷两次,所得向上点数分别为m和n,则函数4233nxxmy在(-1,1)上为单调减函数的概率为:__________.第三题:(总有4答题,总66分)13.(本大题15分)解不等式:23108xxx14.(本大题15分)直线tanx交椭圆14)2(9)3(22yx于21,PP两点,为直线的倾斜角(1)求的取值范围(2)求线段21pp中点的轨迹方程。15.(本大题18分)如图,在斜三菱柱ABC-111CBA中,∠ABA1=ACA1,AB=AC,aBAAA11侧面11BCCB与底面ABC所成的二面角为0120,E,F分别为棱AACB111,的中点(1)求AA1与底面ABC所成的角;(2)求经过CBAA,,,1四点的球的体积;第8页,共8页16.(本大题18分)8位歌手参加艺术节,准备为他们安排M次演出,每次由其中四位登台表演,要求8位歌手中任意两位同时演出的次数一样多,请设计一中方案,使演出次数M最小