第八章立体几何与空间向量第4讲直线、平面平行的判定及其性质1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与___________的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)因为l∥a,a⊂α,l⊄α,所以l∥α这个平面内文字语言图形语言符号语言性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的_____与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b交线2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条_________与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β相交直线文字语言图形语言符号语言性质定理如果两个平行平面同时和第三个平面_____,那么它们的_____平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b相交交线判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)若直线a与平面α内无数条直线平行,则a∥α.()(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()××××√(2019·金华市东阳二中高三调研)a、b、c为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题:①c∥αc∥β⇒α∥β②α∥γβ∥γ⇒α∥β③c∥αa∥c⇒a∥α④a∥γα∥γ⇒a∥α其中正确的命题是()A.①②③B.①④C.②D.①③④解析:选C.②正确.①错在α与β可能相交.③④错在a可能在α内.(教材习题改编)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.过三棱柱ABCA1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析:各中点连线如图,只有平面EFGH与平面ABB1A1平行,在四边形EFGH中有6条符合题意.答案:6(教材习题改编)在正方体ABCDA1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为________.解析:如图,连接AC,BD交于O点,连接OE,因为OE∥BD1,而OE⊂平面ACE,BD1⊄平面ACE,所以BD1∥平面ACE.答案:平行平行关系是空间几何中的一种重要关系,包括线线平行、线面平行、面面平行,其中线面平行在高考试题中出现的频率很高,一般出现在解答题的某一问中.主要命题角度有:(1)线面位置关系的判断;(2)线面平行的证明;(3)线面平行性质的应用.线面平行的判定与性质(高频考点)角度一线面位置关系的判断设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【解析】A错误,n有可能在平面α内;B错误,平面α有可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.【答案】D角度二线面平行的证明(2019·浙江省六市六校联盟模拟)如图所示,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.(1)求证:AB1∥平面BC1D;(2)若BC=3,求三棱锥DBC1C的体积.【解】(1)证明:连接B1C,设B1C与BC1相交于点O,连接OD.因为四边形BCC1B1是平行四边形.所以点O为B1C的中点.因为D为AC的中点,所以OD为△AB1C的中位线,所以OD∥AB1.因为OD⊂平面BC1D,AB1⊄平面BC1D,所以AB1∥平面BC1D.(2)在三棱柱ABCA1B1C1中,侧棱CC1∥AA1.又因为AA1⊥平面ABC,所以侧棱CC1⊥平面ABC,故CC1为三棱锥C1BCD的高,A1A=CC1=2,因为S△BCD=12S△ABC=1212BC·AB=32,所以VDBCC1=VC1BCD=13CC1·S△BCD=13×2×32=1.角度三线面平行性质的应用如图,在四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.证明:FG∥平面AA1B1B.【证明】在四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D,又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG,因为BB1∥CC1,所以BB1∥FG,而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明.(2)判定定理法:在利用判定定理时,关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.1.(2017·高考全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:选A.对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.故选A.2.如图,四棱锥PABCD中,底面ABCD为矩形,F是AB的中点,E是PD的中点.(1)证明:PB∥平面AEC;(2)在PC上求一点G,使FG∥平面AEC,并证明你的结论.解:(1)证明:连接BD与AC交于点O,连接EO.因为四边形ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)PC的中点G即为所求的点.证明如下:连接GE、FG,因为E为PD的中点,所以GE═∥12CD.又F为AB的中点,且四边形ABCD为矩形,所以FA═∥12CD.所以FA═∥GE.所以四边形AFGE为平行四边形,所以FG∥AE.又FG⊄平面AEC,AE⊂平面AEC,所以FG∥平面AEC.如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.面面平行的判定与性质【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G═∥EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EFA1∥平面BCHG.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1═∥BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D,所以平面A1BD1∥平面AC1D.1.(2019·嘉兴调研)如图,AB∥平面α∥平面β,过A,B的直线m,n分别交α,β于C,E和D,F,若AC=2,CE=3,BF=4,则BD的长为()A.65B.75C.85D.95解析:选C.由AB∥α∥β,易证ACCE=BDDF.即ACAE=BDBF,所以BD=AC·BFAE=2×45=85.2.如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.如图,四棱锥PABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面PAD;(2)在线段AB上是否存在一点F,使得平面PAD∥平面CEF?若存在,证明你的结论,若不存在,请说明理由.立体几何中的探索性问题【解】(1)证明:如图所示,取PA的中点H,连接EH,DH,因为E为PB的中点,所以EH∥AB,EH=12AB,又AB∥CD,CD=12AB.所以EH∥CD,EH=CD,因此四边形DCEH是平行四边形,所以CE∥DH,又DH⊂平面PAD,CE⊄平面PAD,所以CE∥平面PAD.(2)如图所示,取AB的中点F,连接CF,EF,所以AF=12AB,又CD=12AB,所以AF=CD,又AF∥CD,所以四边形AFCD为平行四边形,所以CF∥AD,又CF⊄平面PAD,所以CF∥平面PAD,由(1)可知CE∥平面PAD,又CE∩CF=C,故平面CEF∥平面PAD,故存在AB的中点F满足要求.解决探索性问题的策略方法(1)根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)按类似于分析法的格式书写步骤:从结论出发“要使……成立”“只需使……成立”.如图,在正三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点.(1)若F为BB1的中点,判断AC1与平面DEF是否平行?若平行,请给予证明,若不平行,说明理由;(2)试问:在侧棱BB1上是否存在点F,使三棱锥FDEB的体积与三棱柱ABCA1B1C1的体积之比为18.解:(1)法一:连接B1C,BC1交于点G,连接DG,FG,则DG∥AC1,因为DG⊂平面GDF,AC1⊄平面GDF,则AC1∥平面GDF.由于平面GDF∩平面D