1二次函数图像及性质知识总结二次函数概念一般地,形如2yaxbxc(abc,,是常数,0a)的函数,叫做二次函数。定义域是全体实数,图像是抛物线解析式b﹑c为0时2yaxb为0时2yaxcb﹑c不为0时2yaxbxc图像的性质0a开口向上.向上向上0a开口向下向下向下对称轴y轴y轴2bxa顶点坐标00,0c,2424bacbaa,0a时y有最小值X=0.时y最小值等于0X=0,时Y最小值等于c当2bxa时。y有最小值244acba.0a时y有最大值X=0.时y最大值等于0X=0,时Y最大值等于c当2bxa时,y有最大值244acba.0a时开口向上0x时,y随x的增大而增大;0x时,y随x的增大而减小;0x时,y有最小值0.当2bxa时,y随x的增大而减小;当2bxa时,y随x的增大而增大0a时开口向下0x时,y随x的增大而减小;0x时,y随x的增大而增大;0x时,y有最大值0当2bxa时,y随x的增大而增大;当2bxa时,y随x的增大而减小图像画法利用配方法将二次函数2yaxbxc化为顶点式2()yaxhk,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与x轴的交点10x,,20x,(若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.解析式的表示及图像平移1.一般式:2yaxbxc2.顶点式:2()yaxhk3.两根式:12()()yaxxxx2.平移⑴将抛物线解析式转化成顶点式2yaxhk,确定其顶点坐标hk,;在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”①cbxaxy2沿y轴平移:向上(下)平移m个单位,cbxaxy2变成mcbxaxy2(或mcbxaxy2)②cbxaxy2沿轴平移:向左(右)平移m个单位,cbxaxy2变成cmxbmxay)()(2(或cmxbmxay)()(2)2二次函数y=ax2及其图象.一、填空题1.形如____________的函数叫做二次函数,其中______是目变量,a,b,c是______且______≠0.2.函数y=x2的图象叫做______,对称轴是______,顶点是______.3.抛物线y=ax2的顶点是______,对称轴是______.当a>0时,抛物线的开口向______;当a<0时,抛物线的开口向______.4.当a>0时,在抛物线y=ax2的对称轴的左侧,y随x的增大而______,而在对称轴的右侧,y随x的增大而______;函数y当x=______时的值最______.5.当a<0时,在抛物线y=ax2的对称轴的左侧,y随x的增大而______,而在对称轴的右侧,y随x的增大而______;函数y当x=______时的值最______.6.写出下列二次函数的a,b,c.(1)23xxya=______,b=______,c=______.(2)y=x2a=______,b=______,c=______.(3)105212xxya=______,b=______,c=______.(4)2316xya=______,b=______,c=______.7.抛物线y=ax2,|a|越大则抛物线的开口就______,|a|越小则抛物线的开口就______.8.二次函数y=ax2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)y=2x2如图();(2)221xy如图();(3)y=-x2如图();(4)231xy如图();(5)291xy如图();(6)291xy如图().9.已知函数,232xy不画图象,回答下列各题.(1)开口方向______;(2)对称轴______;(3)顶点坐标______;(4)当x≥0时,y随x的增大而______;(5)当x______时,y=0;(6)当x______时,函数y的最______值是______.310.画出y=-2x2的图象,并回答出抛物线的顶点坐标、对称轴、增减性和最值.11.在下列函数中①y=-2x2;②y=-2x+1;③y=x;④y=x2,回答:(1)______的图象是直线,______的图象是抛物线.(2)函数______y随着x的增大而增大.函数______y随着x的增大而减小.(3)函数______的图象关于y轴对称.函数______的图象关于原点对称.(4)函数______有最大值为______.函数______有最小值为______.12.已知函数y=ax2+bx+c(a,b,c是常数).(1)若它是二次函数,则系数应满足条件______.(2)若它是一次函数,则系数应满足条件______.(3)若它是正比例函数,则系数应满足条件______.13.已知函数y=(m2-3m)122mmx的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______,对称轴方程为______,开口______.14.已知函数y=m222mmx+(m-2)x.(1)若它是二次函数,则m=______,函数的解析式是______,其图象是一条______,位于第______象限.(2)若它是一次函数,则m=______,函数的解析式是______,其图象是一条______,位于第______象限.15.已知函数y=mmmx2,则当m=______时它的图象是抛物线;当m=______时,抛物线的开口向上;当m=______时抛物线的开口向下.二、选择题16.下列函数中属于一次函数的是(),属于反比例函数的是(),属于二次函数的是()A.y=x(x+1)B.xy=1C.y=2x2-2(x+1)2D.132xy17.在二次函数①y=3x2;②2234;32xyxy③中,图象在同一水平线上的开口大小顺序用题号表示应该为()A.①>②>③B.①>③>②C.②>③>①D.②>①>③18.对于抛物线y=ax2,下列说法中正确的是()A.a越大,抛物线开口越大B.a越小,抛物线开口越大C.|a|越大,抛物线开口越大D.|a|越小,抛物线开口越大19.下列说法中错误的是()A.在函数y=-x2中,当x=0时y有最大值0B.在函数y=2x2中,当x>0时y随x的增大而增大C.抛物线y=2x2,y=-x2,221xy中,抛物线y=2x2的开口最小,抛物线y=-x2的开口最大D.不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点4三、解答题20.函数y=(m-3)232mmx为二次函数.(1)若其图象开口向上,求函数关系式;(2)若当x>0时,y随x的增大而减小,求函数的关系式,并画出函数的图象.21.抛物线y=ax2与直线y=2x-3交于点A(1,b).(1)求a,b的值;(2)求抛物线y=ax2与直线y=-2的两个交点B,C的坐标(B点在C点右侧);(3)求△OBC的面积.22.已知抛物线y=ax2经过点A(2,1).(1)求这个函数的解析式;(2)写出抛物线上点A关于y轴的对称点B的坐标;(3)求△OAB的面积;(4)抛物线上是否存在点C,使△ABC的面积等于△OAB面积的一半,若存在,求出C点的坐标;若不存在,请说明理由.51.y=ax2+bx+c(a≠0),x,常数,a.2.抛物线,y轴,(0,0).3.(0,0),y轴,上,下.4.减小,增大,x=0,小.5.增大,减小,x=0,大.6.(1).0,3,1(2),0,0,(3),10,5,21(4).6,0,317.越小,越大.8.(1)D,(2)C,(3)A,(4)B,(5)F,(6)E.9.(1)向下,(2)y轴.(3)(0,0).(4)减小.(5)=0(6)=0,大,0.10.略.11.(1)②、③;①、④.(2)③;②.(3)①、④;③.(4)①,0;④,0.12.(1)a≠0,(2)a=0且b≠0,(3)a=c=0且b≠0.13.y=4x2;(0,0);x=0;向上.14.(1)2;y=2x2;抛物线;一、二,(2)0;y=-2x;直线;二、四.15.-2或1;1;-2.16.C、B、A.17.C.18.D.19.C.20.(1)m=4,y=x2;(2)m=-1,y=-4x2.21.(1)a=-1,b=-1;(2));2,2().2,2(CB(3)S△OBC=22.22.(1)241xy;(2)B(-2,1);(3)S△OAB=2;(4)设C点的坐标为),41,(2mm则.221|141|4212m则得6m或.2m∴C点的坐标为).21,2(),21,2(),23,6(),23,6(6二次函数y=a(x-h)2+k及其图象一、填空题1.已知a≠0,(1)抛物线y=ax2的顶点坐标为______,对称轴为______.(2)抛物线y=ax2+c的顶点坐标为______,对称轴为______.(3)抛物线y=a(x-m)2的顶点坐标为______,对称轴为______.2.若函数122)21(mmxmy是二次函数,则m=______.3.抛物线y=2x2的顶点,坐标为______,对称轴是______.当x______时,y随x增大而减小;当x______时,y随x增大而增大;当x=______时,y有最______值是______.4.抛物线y=-2x2的开口方向是______,它的形状与y=2x2的形状______,它的顶点坐标是______,对称轴是______.5.抛物线y=2x2+3的顶点坐标为______,对称轴为______.当x______时,y随x的增大而减小;当x=______时,y有最______值是______,它可以由抛物线y=2x2向______平移______个单位得到.6.抛物线y=3(x-2)2的开口方向是______,顶点坐标为______,对称轴是______.当x______时,y随x的增大而增大;当x=______时,y有最______值是______,它可以由抛物线y=3x2向______平移______个单位得到.二、选择题7.要得到抛物线2)4(31xy,可将抛物线231xy()A.向上平移4个单位B.向下平移4个单位C.向右平移4个单位D.向左平移4个单位8.下列各组抛物线中能够互相平移而彼此得到对方的是()A.y=2x2与y=3x2B.2212xy与2122xyC.y=2x2与y=x2+2D.y=x2与y=x2-29.顶点为(-5,0),且开口方向、形状与函数231xy的图象相同的抛物线是()A.2)5(31xyB.5312xyC.2)5(31xyD.2)5(31xy三、解答题10.在同一坐标系中画出函数221,321yxy3212x和2321xy的图象,并说明y1,y2的图象与函数221xy的图象的关系.711.在同一坐标系中,画出函数y1=2x2,y2=2(x-2)2与y3=2(x+2)2的图象,并说明y2,y3的图象与y1=2x2的图象的关系.填空题12.二次函数y=a(x-h)2+k(a≠0)的顶点坐标是______,对称轴是______,当x=______时,y有最值______;当a>0时,若x______时,y随x增大而减小.13.填表.解析式开口方向顶点坐标对称轴y=(x-2)2-3y=-(x+3)2+25)5(212xy1)25(312xyy=3(x-2)2y=-3x2+214.抛物线1)3(212xy有最______点,其坐标是