求二次函数解析式_综合题_练习+答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12014超越辅导求二次函数解析式:综合题例1已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式.分析:本题可以利用抛物线的一般式来求解,但因A(-1,0)、B(1,0)是抛物线与x轴的交点,因此有更简捷的解法.如果抛物线y=ax2+bx+c与x轴(即y=0)有交点(x1,0),(x2,0).那么显然有∴x1、x2是一元二次方程ax2+bx+c=0的两个根.因此,有ax2+bx+c=a(x-x1)(x-x2)∴抛物线的解析式为y=a(x-x1)(x-x2)(*)(其中x1、x2是抛物线与x轴交点的横坐标)我们将(*)称为抛物线的两根式.对于本例利用两根式来解则更为方便.解:∵抛物线与x轴交于A(-1,0)、B(1,0)∴设抛物线的解析式为y=a(x+1)(x-1)又∵抛物线过M(0,1),将x=0,y=1代入上式,解得a=-12∴函数解析式为y=-x2+1.说明:一般地,对于求二次函数解析式的问题,可以小结如下:①三项条件确定二次函数;②求二次函数解析式的一般方法是待定系数法;③二次函数的解析式有三种形式:究竟选用哪种形式,要根据具体条件来决定.例2由右边图象写出二次函数的解析式.分析:看图时要注意特殊点.例如顶点,图象与坐标轴的交点.解:由图象知抛物线对称轴x=-1,顶点坐标(-1,2),过原点(0,0)或过点(-2,0).设解析式为y=a(x+1)2+23∵过原点(0,0),∴a+2=0,a=-2.故解析式为y=-2(x+1)2+2,即y=-2x2-4x.说明:已知顶点坐标可以设顶点式.本题也可设成一般式y=ax2+bx+c,∵过顶点(-1,2)和过原点(0,0),本题还可以用过点(0,0),(-2,0)而设解析式为y=a(x+2)·x再将顶点坐标(1,2)代入求出a.例3根据下列条件求二次函数解析式.(1)若函数有最小值-8,且a∶b∶c=1∶2∶(-3).(2)若函数有最大值2,且过点A(-1,0)、B(3,0).(3)若函数当x>-2时y随x增大而增大(x<-2时,y随x增大而减小),且图象过点(2,4)在y轴上截距为-2.分析:(1)由a∶b∶c=1∶2∶(-3)可将三个待定系数转化为求一个k.即设a=k,b=2k,c=-3k(2)由抛物线的对称性可得顶点是(1,2)(3)由函数性质知对称轴是x=-2解:(1)设y=ax2+bx+c∵a∶b∶c=1∶2∶(-3)4∴设a=k,b=2k,c=-3k∵有最小值-8∴解析式y=2x2+4x-6(2)∵图象过点A(-1,0)、B(3,0),A、B两点均在x轴上,由对称性得对称轴为x=1.又函数有最大值2,∴顶点坐标为(1,2),∴设解析式为y=a(x-1)2+2.(3)∵函数当x>-2时y随x增大而增大,当x<-2时y随x增大而减小∴对称轴为x=-2设y=a(x+2)2+n∵过点(2,4)在y轴上截距为-2,即过点(0,-2)5说明:题(3)也可设成y=ax2+bx+c,得:题(2)充分利用对称性可简化计算.例4已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式.分析:此例题给出了三个条件,但实际上要看到此题还有隐含条件,如利用A点关于对称轴x=-1对称的对称点A′(1,0),因此可以把问题的条件又充实了,又如已知顶点M到x轴的距离为2,对称轴为x=-1,因此又可以找顶点坐标为(-1,±2),故可利用顶点坐标式求出函数的解析式,此题的解法不唯一,下面分别介绍几种解法.解法(一):∵抛物线的对称轴是x=-1,顶点M到x轴距离为2,∴顶点的坐标为M(-1,2)或M′(-1,-2).故设二次函数式y=a(x+1)2+2或y=a(x+1)2-26又∵抛物线经过点A(-3,0)∴0=a(-3+1)2+2或0=a(-3+1)2-2所求函数式是解法(二):根据题意:设函数解析式为y=ax2+bx+c∵点A(-3,0)在抛物线上∴0=9a-3b+c①又∵对称轴是x=-1∵顶点M到x轴的距离为27解由①,②,③组成的方程组:∴所求函数的解析式是:解法(三):∵抛物线的对称轴是x=-1又∵图象经过点A(-3,0)∴点A(-3,0)关于对称轴x=-1对称的对称点A′(1,0)∴设函数式为y=a(x+3)(x-1)把抛物线的顶点M的坐标(-1,2)或(-1,-2)分别代入函数式,得2=a(-1+3)(-1-1)或-2=a(-1+3)(-1-1)解关于a的方程,得8∴所求函数式为:说明:比较以上三种解法,可以看出解法(一)和解法(三)比解法(二)简便.M点到x轴的距离为2,纵坐标可以是2,也可以是-2,不要漏掉一解.例5已知抛物线y=x2-6x+m与x轴有两个不同的交点A和B,以AB为直径作⊙C,(1)求圆心C的坐标.(2)是否存在实数m,使抛物线的顶点在⊙C上,若存在,求出m的值;若不存在,请说明理由.分析:(1)根据抛物线的对称性,由已知条件AB是直径圆心应是抛物线的对称轴与x轴的交点.9(2)依据圆与抛物线的对称性知,抛物线的顶点是否在⊙C上,需要看顶点的纵坐标的绝对值是否等于⊙C的半径长,依据这个条件,列出关于m的方程,求出m值后再由已知条件做出判断.解:(1)∵y=x2-6x+m=(x-3)2+m-9∴抛物线的对称轴为直线x=3∵抛物线与x轴交于A和B两点,且AB是⊙C的直径,由抛物线的对称性∴圆心C的坐标为(3,0)(2)∵抛物线与x轴有两个不同交点∴△=(-b)2-4m>0,∴m<9设A(x1,0),B(x2,0)∵抛物线的顶点为P(3,m-9)解得:m=8或m=910∵m<9,∴m=9舍去∴m=8∴当m=8时,抛物线的顶点在⊙C上.说明“存在性”问题是探索性问题的主要形式.解答这类问题的基本思路是:假设“存在”—→演绎推理—→得出结论(合理或矛盾).例6已知抛物线y=ax2+bx+c,其顶点在x轴的上方,它与y轴交于点C(0,3),与x轴交于点A及点B(6,0).又知方程:ax2+bx+c=0(a≠0)两根平方和等于40.(1)求抛物线的解析式;(2)试问:在此抛物线上是否存在一点P,在x轴上方且使S△PAB=2S△CAB.如果存在,求出点P的坐标;如果不存在,说明理由.分析:求解析式的三个条件中有一个是由方程的根来得到系数的关系式,通过解方程组求出系数也就得到解析式.第(2)问中问是否存在那么假设存在进行推理,从而判断存在或不存在.解:(1)由题设条件得11∴抛物线顶点为(2,4).又A点坐标为(-2,0),而△ABC与△PAB同底,且当P点位于抛物线顶点时,△PAB面积最大.显然,S△PAB=16<2S△ABC=2×12=24.故在x轴上方的抛物线上不存在点P使S△PAB=2S△CAB.例7在一块底边长为a,高为h的三角形的铁板ABC上,要截出一块矩形铁板EFGH,使它的一边FG在BC边上,矩形的边EF等于多长时,矩形铁板的面积最大.12分析:问题问“矩形的边EF等于多长时,矩形铁板的面积最大”,所以题目的目标是矩形面积(S)而自变量就是EF的长(x),因此问题的关键就是用EF(x)表示矩形面积S,这就要用EF表示出EH.解:设内接矩形EFGH中,AM⊥BC,∵EH∥BC,设EF=x(0<x<h)则AN=h-x设矩形EFGH的面积为S说明:解决联系实际的问题,又与几何图形有关就应综合应用几何、代数知识,利用相似成比例列出函数式再求最值.例8二次函数y=ax2+bx-5的图象的对称轴为直线x=3,图象与y轴相交于点B,13(1)求二次函数的解析式;(2)求原点O到直线AB的距离.分析:为直线x=3,来求系数a,b.注意根与系数关系定理的充分应用.为求原点O到直线AB的距离要充分利用三角形特征和勾股定理.解:(1)如图,由已知,有14∴(x1+x2)2-2x1x2=26,∴a=-1.∴解析式为y=-x2+6x-5=-(x-3)2+4.(2)∵OB=5,OC=4,AC=3,∴△AOB为等腰三角形,作OD⊥AB于D,说明:有部分学生把二次函数的顶点坐标记错,也有的学生不会用“根与系数的关系”,得不出解析式.有不少学生没有发现△AOB是等腰三角形,若发现为等腰三角形,OD是底边AB的高,利用勾股定理就迎刃而解了.15发生错误的原因,没记熟抛物线的顶点坐标公式,有的学生记下来了,但与两个根如何综合使用发生了问题,有些学生求点O到直线AB的距离,没有分析出图形与数量关系,其实△AOB是等腰三角形,知道这一性质求OD的数据就方便多了.纠正错误的办法,加强抛物线顶点坐标的学习、顶点坐标与巧用“根与系数的关系”的学习;另外,也要加强寻找特殊点的学习.一般说,无论多难的题目,总是有解题规律的.在几何图形中,经过认真分析,有的题目总含等边三角形、等腰三角形、直角三角形.例9设A,B为抛物线y=-3x2-2x+k与x轴的两个相异交点,M为抛物线的顶点,当△MAB为等腰直角三角形时,求k的值.分析:首先按题意画出图形,再运用抛物线的对称性挖掘题中的隐含条件,来解答本题,得出解后要分析解的合理性进行取舍.解:∵抛物线与x轴有两个相异交点,故△>0,即(-2)2-4·(-3)k>0,解关于k的不等式,得16根据题意,作出图象,如图设N为对称轴与x轴的交点,由抛物线的对称性知,N为AB中点.∵∠AMB=Rt∠,且MN的长即为M点的纵坐标,又设A点坐标(x1,0),B点坐标(x2,0),则有17解关于k的方程,得∴k=0.说明:本题有一个重要的隐含条件,即要使抛物线与x轴有两个相异交点,应首先满足△>0.(2)本题要求学生会运用抛物线的对称性观察图形,联想直角三角形斜边上的中线等于斜边的一半这个重要定理,找到等量关系,列出关于k的方程,如果没有这种灵活运用定理的能力,将得不到关于k的方程,难以求解.例10某商场将进货单价为18元的商品,按每件20元销售时,每日可销售100件,如果每提价1元(每件),日销售量就要减少10件,那么把商品的售出价定为多少时,才能使每天获得的利润最大?每天的最大利润是多少?分析:此题主要涉及两个量,即售出价和每天获得的利润.而每天获得的利润是随着售出价的改变而改变的,所以要找到二者的函数18关系式,应把售出价设为自变量,把每天获得的利润看作是售出价的函数.这样,再根据已知条件,就可列出二者的函数关系式.解:设该商品的售出价定为x元/件时,每天可获得y元的利润.即每件提价(x-20)(元),每天销售量减少10(x-20)(件),也就是每天销售量为[100-10(x-20)](件),每件利润(x-18)(元)根据题意,得:y=(x-18)[100-(x-20)×10]=-10x2+480x-5400=-10(x-24)2+360.(20≤x≤30)y是x的二次函数∵a=-10<0,20≤24≤30∴当x=24时,y有最大值为360.答:每件售出价为24元时,才能使每天获得的利润最大,每天的最大利润是360元.例11改革开放后,不少农村用上了自动喷灌设备,如图所示,设水管AB高出地面1.5米,在B处有一个自动旋转的喷水头,一瞬间,喷出的水流呈抛物线状,喷头B与水流最高点C的连线与水平面成1945°角,水流的最高点C比喷头B高出2米,在所建的坐标系中,求水流的落地点F到A点的距离是多少?分析:要求点F到A点的距离,也就是求A、F两点横坐标的差.又A点横坐标为0,所以只需求出F点横坐标.F点在抛物线上是抛物线与x轴的交点,所以要根据已知条件,求出抛物线的解析式.解:过C点作CD⊥Ox于D,BE⊥CD于E,则有CE=BE=2,AB=DE=1.5,则B(0,1.5),C(2,3.5).∵C为抛物线的最高点,20例12如图,这是某空防部队进行射击训练时在平面直角坐标系中的示意图.地导弹运行达到距地面最大高度3千米时,相应的水平距离为4千米(即图中E点).(1)若导弹运行轨道为一抛物线,求抛物线的解析式;(2)说明按(1)中轨道运行的导弹能否击中目标C的理由.分析:题中的实际条件转化成

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功