Tayloy公式的唯一性证明作者:卢晓峰1.引理:设0lim()0xxgx,()gx在0x的某邻域内可导,且()gx在0x处连续。若0()(())ngxxx,则10()(())ngxxx。证明:00000000011100000()()()()()()limlimlimlimlim()()()()()nnnnnxxxxxxxxxxgxgxgxxxgxgxgxxxxxxxxxxx又0()(())ngxxx,00lim()()0xxgxgx00()lim0()nxxgxxx;000()lim0()nxxgxxx010()lim0()nxxgxxx,即10()(())ngxxx。2.唯一性证明:()fx在0x处存在n阶导,设0()()(())nnfxPxxx1。(其中()nPx为n次多项式)设1式中0(())()nxxgx。易证:()gx满足引理的条件。10()(())ngxxx,20()(())ngxxx,,(1)0()()ngxxx。()()()nfxPxgx,()()()nfxPxgx,,(1)(1)(1)()()()nnnnfxPxgx2对2中的所有等式,均取0xx的极限,则有:00()()nfxPx,00()()nfxPx,,(1)(1)00()()nnnfxPx又00(1)(1)(1)(1)(1)()()000000()()()()()()limlim()nnnnnnnnnnxxxxfxfxPxgxPxfxPxxxxx00()()nfxPx,00()()nfxPx,,()()00()()nnnfxPx。我们不妨设:2010200()()()()nnnnPxaaxxaxxaxx,由上我们可知:00()naPx,01()1!fxa,,()0()!nnfxan;即()()nnTxPx,其中()nTx为()fx的n次Tayloy多项式。