2008高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题数码相机定位数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。标定的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。而它们的像一般会变形,如图1所示,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,标定就可实现。图1靶标上圆的像有人设计靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。以AC边上距离A点30mm处的B为圆心,12mm为半径作圆,如图2所示。图2靶标示意图用一位置固定的数码相机摄得其像,如图3所示。图3靶标的像请你们:(1)建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标,这里坐标系原点取在该相机的焦点,x-y平面平行于像平面;(2)对由图2、图3分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标,该相机的像距(即焦点到像平面的距离)是1577个像素单位(1毫米约为3.78个像素单位),相机分辨率为1024×786;(3)设计一种方法检验你们的模型,并对方法的精度和稳定性进行讨论;(4)建立用此靶标给出两部固定相机相对位置的数学模型和方法。2008高教社杯全国大学生数学建模竞赛A题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。(1)靶标上圆的像是椭圆,但圆心的像一般不是椭圆的形心。对给定的坐标系,由相片可获取靶标圆的像的边界坐标数据,根据这些边界点的原像落在靶标平面且落在对应圆周上的性质,利用光学成像原理可建立确定靶标平面方程和靶标圆的圆心坐标的非线性方程组数学模型,进而求得靶标圆心像的坐标。模型求解可直接求解非线性方程组,也可化为优化问题求解。由于在某些情形模型可能有多解,化为优化问题后,目标函数有可能为多峰,在求解时应加以注意。(2)要以模型的合理性和优劣作为主要评价标准,不要以数值结果好坏作为评价的唯一标准。(3)模型检验是数学建模的一个重要环节。但以往重视不够。对本问题,应对于靶标平面具有已知特殊倾角的情形,分别对有无误差的情形逆向设计数据,即在靶标平面方程和圆方程已知的情况下,根据光学成像原理,计算获得圆周像的各点坐标和圆心像的坐标。利用圆周像的各点坐标数据(并加上随机误差)用建立的模型和方法,计算出圆心的像坐标,并与通过光学成像原理计算所得的圆心像坐标进行比较,检验模型与方法的有效性与稳定性。精度是一个复杂的问题,鼓励学生发挥自己的想象力加以研究。(4)对两部相机各自取固定在其上的坐标系,决定它们相对位置即确定这两个坐标系之间的变换关系。此变换可分解为一个平移和一个绕原点的旋转。于是要确定一个三维平移向量t和一个旋转变换矩阵R,R是一个正交阵,因此需要确定6个未知的参数。从靶标上若干个圆的圆心的像坐标可以得到它们分别在在两个相机坐标系中的坐标。根据这些点的坐标变换关系,可得一个方程组,足以确定6个未知参数,从而确定变换关系。[注]关于最早公布的题中存在的个别错误之处地说明:按照题中所给图像,同学应该能够判断出相机分辨率是1024*768,而不是1024*786;如果同学按最早公布的题中所说的像距就是焦点(正确的说法应该是光心)到像平面的距离建模和计算,可能会影响到数值结果,但这些问题本质上对模型和算法及其检验、分析的影响不大。2008高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题高等教育学费标准探讨高等教育事关高素质人才培养、国家创新能力增强、和谐社会建设的大局,因此受到党和政府及社会各方面的高度重视和广泛关注。培养质量是高等教育的一个核心指标,不同的学科、专业在设定不同的培养目标后,其质量需要有相应的经费保障。高等教育属于非义务教育,其经费在世界各国都由政府财政拨款、学校自筹、社会捐赠和学费收入等几部分组成。对适合接受高等教育的经济困难的学生,一般可通过贷款和学费减、免、补等方式获得资助,品学兼优者还能享受政府、学校、企业等给予的奖学金。学费问题涉及到每一个大学生及其家庭,是一个敏感而又复杂的问题:过高的学费会使很多学生无力支付,过低的学费又使学校财力不足而无法保证质量。学费问题近来在各种媒体上引起了热烈的讨论。请你们根据中国国情,收集诸如国家生均拨款、培养费用、家庭收入等相关数据,并据此通过数学建模的方法,就几类学校或专业的学费标准进行定量分析,得出明确、有说服力的结论。数据的收集和分析是你们建模分析的基础和重要组成部分。你们的论文必须观点鲜明、分析有据、结论明确。最后,根据你们建模分析的结果,给有部门写一份报告,提出具体建议。2008高教社杯全国大学生数学建模竞赛B题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。高等教育学费标准是社会关注的热点之一,是一个相当开放的问题,许多媒体的讨论都缺乏数据的支持和定量的分析。评阅中除了题目中的明确要求外,要特别注意以下问题:1.应多角度、全面、综合地考虑学费标准问题。模型中至少应考虑教育质量的保证和承受能力两个方面;例如,培养成本、成本分担、承受能力、长远收益、国际比较、历史比较等方面的考虑。2.数据的收集非常重要。应该收集充分的、有根据、有说服力的数据,并能支持建模的结论。估计可能收集到的数据有:国民经济增长数据,教育经费的比例,国家生均拨款和其它教育投入,培养一个大学生平均每年所需费用、学校每年的运营开支、每年报考大学的人数和录取人数、学生分布结构,家庭经济收入分布、困难学生的人数、每个学生每年的学费、生活费、奖学金、助学金、贷款、捐赠款等。3.应该通过数据的统计分析和建模深入细致地讨论学费标准问题,并要有明确的结论。2008高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)C题地面搜索5.12汶川大地震使震区地面交通和通讯系统严重瘫痪。救灾指挥部紧急派出多支小分队,到各个指定区域执行搜索任务,以确定需要救助的人员的准确位置。在其它场合也常有类似的搜索任务。在这种紧急情况下需要解决的重要问题之一是:制定搜索队伍的行进路线,对预定区域进行快速的全面搜索。通常,每个搜索人员都带有GPS定位仪、步话机以及食物和生活用品等装备。队伍中还有一定数量的卫星电话。GPS可以让搜索人员知道自己的方位。步话机可以相互进行通讯。卫星电话用来向指挥部报告搜索情况。下面是一个简化的搜索问题。有一个平地矩形目标区域,大小为11200米×7200米,需要进行全境搜索。假设:出发点在区域中心;搜索完成后需要进行集结,集结点(结束点)在左侧短边中点;每个人搜索时的可探测半径为20米,搜索时平均行进速度为0.6米/秒;不需搜索而只是行进时,平均速度为1.2米/秒。每个人带有GPS定位仪、步话机,步话机通讯半径为1000米。搜索队伍若干人为一组,有一个组长,组长还拥有卫星电话。每个人搜索到目标,需要用步话机及时向组长报告,组长用卫星电话向指挥部报告搜索的最新结果。现在有如下问题需要解决:1.假定有一支20人一组的搜索队伍,拥有1台卫星电话。请设计一种你认为耗时最短的搜索方式。按照你的方式,搜索完整个区域的时间是多少?能否在48小时内完成搜索任务?如果不能完成,需要增加到多少人才可以完成。2.为了加快速度,搜索队伍有50人,拥有3台卫星电话,分成3组进行搜索。每组可独立将搜索情况报告给指挥部门。请设计一种你认为耗时最短的搜索方式。按照你的搜索方式,搜索完整个区域的时间是多少?2008高教社杯全国大学生数学建模竞赛C题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。问题1为了使搜索时间短,可以综合考虑三个因素:按一笔画原则尽量不走重叠路;尽量不空走;尽量少改变队形(每次改变队形要空走)。解题中应交待清楚具体的搜索方式(如一字并排前进,每人搜索宽度为2×20=40米)、具体的行进路线,算出完成搜索的时间(空走与改变行进队形均需要时间)。行进路线的选择可以不同。对自己的方案是否是好方案,应有可信的讨论。应有明确的计算,说明方案可行。最好对不同情况进行比较。问题2可在问题1的基础上适当分配人员,分区搜索。要看其分区及行进线路是否合理。应有明确的计算,并给出解答。注意讨论的完善性,数学表达的清晰性。2008高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)D题NBA赛程的分析与评价NBA是全世界篮球迷们最钟爱的赛事之一,姚易加盟以后更是让中国球迷宠爱有加。NBA共有30支球队,西部联盟、东部联盟各15支,大致按照地理位置,西部分西南、西北和太平洋3个区,东部分东南、中部和大西洋3个区,每区5支球队。对于2008~2009新赛季,常规赛阶段从2008年10月29日(北京时间)直到2009年4月16日,在这5个多月中共有1230场赛事,每支球队要进行82场比赛,附件1是30支球队2008~2009赛季常规赛的赛程表,附件2是分部、分区和排名情况(排名是2007~2008赛季常规赛的结果),见。对于NBA这样庞大的赛事,编制一个完整的、对各球队尽可能公平的赛程是一件非常复杂的事情,赛程的安排对球队实力的发挥和战绩有一定的影响,从报刊上经常看到球员、教练和媒体对赛程的抱怨或评论。这个题目主要是要求用数学建模方法对已有的赛程进行定量的分析与评价:1)为了分析赛程对某一支球队的利弊,你认为有哪些要考虑的因素,根据这些因素将赛程转换为便于进行数学处理的数字格式,并给出评价赛程利弊的数量指标。2)按照1)的结果计算、分析赛程对姚明加盟的火箭队的利弊,并找出赛程对30支球队最有利和最不利的球队。3)分析赛程可以发现,每支球队与同区的每一球队赛4场(主客各2场),与不同部的每一球队赛2场(主客各1场),与同部不同区的每一球队有赛4场和赛3场(2主1客或2客1主)两种情况,每支球队的主客场数量相同且同部3个区的球队间保持均衡。试根据赛程找出与同部不同区球队比赛中,选取赛3场的球队的方法。这种方法如何实现,对该方法给予评价,也可以给出你认为合适的方法。2008高教社杯全国大学生数学建模竞赛D题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。1)分析一支球队的赛程主要看列出诸因素的合理及全面。要考虑的因素大体上有:连续2天比赛(即所谓背靠背)的次数,特别是第2天客场的情况(赛程中没有连续3天比赛的情况);总旅程;连续在外地的时间;连续与强队比赛的次数;比赛间隙的分配等。将赛程转换为便于进行数学处理的数字格式应根据上述因素进行,如为考虑连续比赛及比赛间隙的分配,将用月日表示的比赛日期转换为第几天比赛,用数列A1表示;为考虑主客场及(适当简化的)旅程,将主场记作0,同区的客场记作1,同部不同区的客场记作2,不同部的客场记作4,用数列A2表示;为考虑对手的强弱,将进入季后赛的对手视作强队,记作1,其他对手视作弱队,记作0,用数列A3表示。A1,A2,A3可构成矩阵A。赛程合理性的数量指标可由A给出,如作A1的差分序列DA1,连续2天比赛的次数为序列DA