数学教学:浅谈排列组合中的“球入盒”问题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

龙源期刊网数学教学:浅谈排列组合中的“球入盒”问题作者:蔡丽菊来源:《数学大世界·中旬刊》2019年第08期在高中数学中有《排列组合》这一章,对学生逻辑推理能力、分类讨论以及建构模型的能力都有极高的要求,包括现在的数学竞赛中都涉及排列组合问题。其中,“小球与盒子”的模型问题一直是一个热门话题。由于球与盒子都有着“相同”与“不同”的分类,并且具有知识上的综合性、解题技巧上的灵活性以及思维方式上的抽象性,使同学对此类问题感到很是困惑,感觉千变万化,无从下手。下面我就对此模型问题的解法及运用作一个总结和分析,望同学有所感悟。类型一:不同小球入不同盒子的模型1.球少盒多型例1:若将4个不同的小球,放入5个不同的盒子里,有几种不同的放法?解:分四步完成,每一个小球都有5种放法,所以共有种不同的放法。变式1:若将4个不同的小球,放入5个不同的盒子里,每盒至多放一个,有几种不同的放法?解:与例1相比,这次把盒子看成元素,即从5个不同的盒子里任意取出4个盒子,来放4个不同的小球,所以这是个排列问题。有种不同的方法。变式2:若将5个不同的小球,放入5个不同的盒子里,每盒至少放一个,有几种不同的放法?解:此题是5个不同小球的全排列问题,所以有种不同的方法。注:此类问题一般用排列组合思想,利用分步计数原理2.球多盒少且每盒至少放一球型例2:若将5个不同的小球,放入4个不同的盒子里,每盒至少放一个,有几种不同的放法?龙源期刊网解:分两步完成,先将5个小球先分成4组,根据题意,每组分别是2个、1个、1个、1个,有种方法;然后再将分成4组的小球放到4个不同的盒子里,相当于全排列,即有种方法,所以共有种不同的方法。变式:若将5个不同的小球放入4个不同的盒子里,恰有1个空盒,有几种不同的放法?解:分三步完成。第一步,选1个空盒,有种不同的方法;类型二:相同小球放入不同盒子的模型例3:若将10个相同的小球,放入3个不同的盒子里,每个盒子不空,有多少种不同的放法?解:此类问题可以用隔板法解决,即在10个小球中间的9个空中放两个相同隔板的问题,自然分成3组,代表放入三个不同盒子中,故有种方法。变式1:若将10个相同的小球放入3个不同的盒子里,允许盒子空,有多少种不同的放法?解:此问题变化的地方是可以空盒,那么怎么保证盒子空时也可以用隔板呢?不如我们再添上3个球,即在13个小球中间的12个空中放两个相同隔板的问题,自然分成3组,代表放入三个不同盒子中,再每个盒子拿走1个小球,这样空的可能就存在了。故有种方法。变式2:若将10个相同的小球装入3个编号分别为1,2,3的盒子,要求盒子里球的个数不小于盒子的编号数,这样的装法总数是多少?龙源期刊网解:此题分两步,先将编号为1,2,3的3个盒子分别放入0,1,2个球,再把剩下的7个球分成3组,即在这7个球中间的6个空档中放入两个相同隔板,自然分成3组,代表放入三个不同盒子中。即3个盒子此时小球肯定不小于编号数了。故有种放法。应用3(名额分配问题):将10个三好生分配给3个班级。(1)每班至少一个,则共有多少种分配方法?(2)任意分配共有多少种分配方法?(3)若班级为一、二、三班,三好生人数不少于班级数,则共有多少种分配方法?解:由于10个三好生是相同的,那么就等价于10个相同的小球放入3个不同盒子。龙源期刊网(1)隔板法,即9个空格中插入2个隔板,共有种分配方法。(2)即从10个名额和2个隔板,从12个位置中选2个放隔板,共种分配方法。(3)先给一、二、三班0个,1个,2个三好生名额,再对剩下的7个三好生名额用隔板法,共有种分配方法。注:如果是处理“相同元素不同组”模型时,我们都可以用“隔板法”;如果每组元素数为至少一个时,可用插“隔板”;如果出現每组元素数为0个时用排“隔板”。【归纳小结】其实小球入盒是排列组合中非常典型的问题,还有像方程解的问题和名额分配等问题,虽然形式多变,但实际与小球入盒问题是等价的。小球入盒可以分为4类:不同的小球放入相同的盒子里;不同的小球放入不同的盒子里;相同的小球放入相同的盒子中;相同的小球放入不同的盒子里。解决小球入盒问题最高效、最准确的方法是“先分组,后分配”,解答相同小球入不同盒子问题的最有效、最简易的方法是隔板法。虽然看起来很复杂,其实只有搞清楚类型,注意小球和盒子的“同”与“不同”,对号入座,再次结合两个计数原理,我相信对同学提高此类问题的解题能力一定是有所帮助的。

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功