《电动力学》课后答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

电动力学习题解答第1页电动力学答案第一章电磁现象的普遍规律1.根据算符∇的微分性与向量性,推导下列公式:BBBBAAAABBBBAAAAAAAABBBBAAAABBBBBBBBAAAA)()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇AAAAAAAAAAAAAAAA)()(221∇⋅−∇=×∇×A解:(1))()()(ccAAAABBBBBBBBAAAABBBBAAAA⋅∇+⋅∇=⋅∇BBBBAAAABBBBAAAAAAAABBBBAAAABBBB)()()()(∇⋅+×∇×+∇⋅+×∇×=ccccBBBBAAAABBBBAAAAAAAABBBBAAAABBBB)()()()(∇⋅+×∇×+∇⋅+×∇×=(2)在(1)中令BBBBAAAA=得:AAAAAAAAAAAAAAAAAAAAAAAA)(2)(2)(∇⋅+×∇×=⋅∇,所以AAAAAAAAAAAAAAAAAAAAAAAA)()()(21∇⋅−⋅∇=×∇×即AAAAAAAAAAAAAAAA)()(221∇⋅−∇=×∇×A2.设u是空间坐标zyx,,的函数,证明:uufuf∇=∇dd)(,uuudd)(AAAAAAAA⋅∇=⋅∇,uuudd)(AAAAAAAA×∇=×∇证明:(1)zyxzufyufxufufeeeeeeeeeeee∂∂+∂∂+∂∂=∇)()()()(zyxzuufyuufxuufeeeeeeeeeeee∂∂+∂∂+∂∂=dddddduufzuyuxuufzyx∇=∂∂+∂∂+∂∂=dd)(ddeeeeeeeeeeee(2)zuAyuAxuAuzyx∂∂+∂∂+∂∂=⋅∇)()()()(AAAAzuuAyuuAxuuAzyx∂∂+∂∂+∂∂=dddddduuzuyuxuuAuAuAzyxzzyyxxdd)()dddddd(AAAAeeeeeeeeeeeeeeeeeeeeeeee⋅∇=∂∂+∂∂+∂∂⋅++=(3)uAuAuAzuyuxuuuzyxzyxd/dd/dd/d///dd∂∂∂∂∂∂=×∇eeeeeeeeeeeeAAAAzxyyzxxyzyuuAxuuAxuuAzuuAzuuAyuuAeeeeeeeeeeee)dddd()dddd()dddd(∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=zxyyzxxyzyuAxuAxuAzuAzuAyuAeeeeeeeeeeee])()([])()([])()([∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=)(uAAAA×∇=3.设222)'()'()'(zzyyxxr−+−+−=为源点'xxxx到场点xxxx的距离,rrrr的方向规定为电动力学习题解答第2页从源点指向场点。(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:rrr/'rrrr=−∇=∇;3/)/1(')/1(rrrrrrr−=−∇=∇;0)/(3=×∇rrrrr;0)/(')/(33=⋅−∇=⋅∇rrrrrrrrrr,)0(≠r。(2)求rrrr⋅∇,rrrr×∇,rrrraaaa)(∇⋅,)(rrrraaaa⋅∇,)]sin([0rrrrkkkkEEEE⋅⋅∇及)]sin([0rrrrkkkkEEEE⋅×∇,其中aaaa、kkkk及0EEEE均为常向量。(1111)证明:222)'()'()'(zzyyxxr−+−+−=○1rzzyyx'xrrzyx/])'()'()()[/1(rrrreeeeeeeeeeee=−+−+−=∇rzzyyx'xrrzyx/])'()'()()[/1('rrrreeeeeeeeeeee−=−−−−−−=∇可见rr'−∇=∇○23211dd1rrrrrrrrrrr−=∇−=∇⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛∇32'1'1dd1'rrrrrrrrrrr=∇−=∇⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛∇可见()()rr/1'/1−∇=∇○3rrrrrrrrrrrrrrrr×∇+×∇=×∇=×∇)/1()/1(])/1[()/(3333rrrr0301dd43=×−=+×∇⎟⎠⎞⎜⎝⎛=rrrrrrrrrrrrrrrrr○4rrrrrrrrrrrrrrrr⋅∇+⋅∇=⋅∇=⋅∇33331)/1(])/1[()/(rrrr03334=+⋅−=rrrrrrrrrrr,)0(≠r(2222)解:○13])'()'()'[()(=−+−+−⋅∂∂+∂∂+∂∂=⋅∇zyxzyxzzyyxxzyxeeeeeeeeeeeeeeeeeeeeeeeerrrr○20'''///=−−−∂∂∂∂∂∂=×∇zzyyxxzyxzyxeeeeeeeeeeeerrrr○3])'()'()')[(()(zyxzyxzzyyxxzayaxaeeeeeeeeeeeerrrraaaa−+−+−∂∂+∂∂+∂∂=∇⋅aaaaeeeeeeeeeeee=++=zzyyxxaaa○4rrrraaaarrrraaaaaaaarrrraaaarrrrrrrraaaa)()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇因为,aaaa为常向量,所以,0=×∇aaaa,0)(=∇⋅aaaarrrr,又0000=×∇rrrr∵,aaaarrrraaaarrrraaaa=∇⋅=⋅∇∴)()(○5)]sin([)sin()()]sin([000rrrrkkkkEEEErrrrkkkkEEEErrrrkkkkEEEE⋅∇⋅+⋅⋅∇=⋅⋅∇0EEEE为常向量,00=⋅∇EEEE,而kkkkrrrrkkkkrrrrkkkkrrrrkkkkrrrrkkkk)cos()()cos()sin(⋅=⋅∇⋅=⋅∇,电动力学习题解答第3页所以)cos()]sin([00rrrrkkkkEEEEkkkkrrrrkkkkEEEE⋅⋅=⋅⋅∇○6)]cos()]sin([)]sin([000rrrrkkkkEEEEkkkkEEEErrrrkkkkrrrrkkkkEEEE⋅×=×⋅∇=⋅×∇4.应用高斯定理证明ffffSSSSffff×=×∇∫∫SVVdd,应用斯托克斯(Stokes)定理证明∫∫=∇×LSϕϕllllSSSSdd证明:(I)设cccc为任意非零常矢量,则∫∫×∇⋅=×∇⋅VVVV)]([ddffffccccffffcccc根据矢量分析公式)()()(BBBBAAAABBBBAAAABBBBAAAA×∇⋅−⋅×∇=×⋅∇,令其中ffffAAAA=,ccccBBBB=,便得ccccffffccccffffccccffffccccffff⋅×∇=×∇⋅−⋅×∇=×⋅∇)()()()(所以∫∫∫×⋅∇=×∇⋅=×∇⋅VVVVVV)(d)]([ddccccffffffffccccffffcccc∫⋅×=SSSSccccffffd)(ffffSSSSccccffffSSSScccc∫∫×⋅=×⋅=d)d(因为cccc是任意非零常向量,所以∫∫×=×∇ffffSSSSffffddVV(II)设aaaa为任意非零常向量,令aaaaFFFFϕ=,代入斯托克斯公式,得∫∫⋅=⋅×∇llllFFFFSSSSFFFFSSSSdd(1)(1)式左边为:∫∫×∇+×∇=⋅×∇SSSSSSaaaaaaaaSSSSaaaad][d)(ϕϕϕ∫∫⋅∇×−=⋅×∇=SSSSSSaaaaSSSSaaaaddϕϕ∫∫∇×⋅=×∇⋅−=SSϕϕSSSSaaaaSSSSaaaadd∫∇×⋅=SϕSSSSaaaad(2)(1)式右边为:∫∫⋅=⋅llllaaaallllaaaaddϕϕ(3)所以∫∫⋅=∇×⋅llllaaaaSSSSaaaaddϕϕS(4)因为aaaa为任意非零常向量,所以∫∫=∇×llllSSSSddϕϕS5.已知一个电荷系统的偶极矩定义为'd'),'()(VttVxxxxxxxxpppp∫=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJJJJ证明pppp的变化率为:∫=VVttd),'(ddxxxxJJJJpppp证明:方法(I)∫∫∂∂==VVVttVttt'd]),(['d),(ddddx'x'x'x'x'x'x'x'x'x'x'x'x'x'x'x'ppppρρ∫∫⋅∇−=∂∂=VVVVtt'd)'('d),(x'x'x'x'JJJJx'x'x'x'x'x'x'x'ρ∫∫⋅∇−=⋅⋅∇−=⋅VVV'xVt'd)'('d)'(dd1111JJJJeeee''''xxxxJJJJeeeepppp'd])'()('[11V'x'xVJJJJJJJJ⋅⋅⋅⋅∇∇∇∇++++⋅⋅⋅⋅−∇−∇−∇−∇====∫∫∫∫电动力学习题解答第4页∫∫+⋅−=VxSVJ'x'd'd1SSSSJJJJ1111因为封闭曲面S为电荷系统的边界,所以电流不能流出这边界,故0'd1=⋅∫S'xSSSSJJJJ,∫=⋅VxVJt'ddd11eeeepppp同理∫=⋅VxVJt'ddd22eeeepppp,∫=⋅VxVJt'ddd33eeeepppp所以∫=VVt'dddJJJJpppp方法(II)∫∫∂∂==VVVttVttt'd]),(['d),(ddddx'x'x'x'x'x'x'x'x'x'x'x'x'x'x'x'ppppρρ∫∫⋅∇−=∂∂=VVVVtt'd)'('d),(x'x'x'x'JJJJx'x'x'x'x'x'x'x'ρ根据并矢的散度公式ggggffffggggfffffgfgfgfg)()()(∇⋅+⋅∇=⋅∇得:JJJJxxxxJJJJxxxxJJJJxxxxJJJJJxJxJxJx+⋅∇=∇⋅+⋅∇=⋅∇')(')(')()'(∫∫+⋅∇−=VVVVt'd'd)('ddJJJJJx'Jx'Jx'Jx'pppp∫∫+⋅−=VV'd)'(dJJJJJxJxJxJxSSSS∫=VV'dJJJJ6.若mmmm是常向量,证明除0=R点以外,向量3/R)(RRRRmmmmAAAA×=的旋度等于标量3/RRRRRmmmm⋅=ϕ的梯度的负值,即ϕ−∇=×∇AAAA,其中R为坐标原点到场点的距离,方向由原点指向场点。证明:3/)/1rrrrrr−=∇(∵])1[()]1([)(3mmmmmmmmrrrrmmmmAAAA×∇×∇=∇××−∇=××∇=×∇∴rrrmmmmmmmmmmmmmmmm])1[()]1([1)(1)(∇⋅∇−∇⋅∇−∇∇⋅+∇⋅∇=rrrrmmmmmmmm]1[1)(2rr∇−∇∇⋅=其中0)/1(2=∇r,(0≠r)r1)(∇∇⋅=×∇∴mmmmAAAA,(0≠r)又)]1([)(3rr∇⋅−∇=⋅∇=∇mmmmrrrrmmmmϕmmmmmmmmmmmmmmmm])1[()1)(()()1()]1([∇⋅∇−∇∇⋅−×∇×∇−∇×∇×−=rrrr)1)((r∇∇⋅−=mmmm所以,当0≠r时,ϕ−∇=×∇AAAA7.有一内外半径分别为1r和2r的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷fρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。解:(1)设场点到球心距离为r。以球心为中心,以r为半径作一球面作为高斯面。由对称性可知,电场沿径向分布,且相同r处场强大小相同。电动力学习题解答第5页当1rr时,01=D,01=E。当21rrr时,frrDrρππ)(34431322−=231323)(rrrDfρ−=∴,231323)(rrrEfερ−=,向量式为rrrrEEEE331323)(rrrfερ−=当2rr时,frrDrρππ)(344313232−=2313233)(rrrDfρ−=∴20313233)(rrrEfερ−=向量式为rrrrEEEE30313233)(rrrfερ−=(2)当21rrr时,)()(202202DDDDDDDDEEEEDDDDPPPPεεερ−⋅−∇=−⋅−∇=⋅−∇=pfρεεεε)1()1(020−−=⋅∇−−=DDDD当1rr=时,0)1()()(12020212=−−=−⋅−=−⋅−==rrpDDDDDDDDDDDDnnnnPPPPPPPPnnnnεεεεσ当2rr=时,frrprrrρεεεεσ22313202023)1()1(2−−=−=⋅=

1 / 40
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功