专题01集合与函数2017年高考数学文试题分项版解析解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.【2017课表1,文1】已知集合A=|2xx,B=|320xx,则A.AB=3|2xxB.ABC.AB3|2xxD.AB=R【答案】A【解析】【考点】集合运算.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.【2017课标II,文1】设集合{1,2,3},{2,3,4}AB则ABA.123,4,,B.123,,C.234,,D.134,,【答案】A【解析】由题意{1,2,3,4}AB,故选A.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.3.【2017课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则AB中元素的个数为()A.1B.2C.3D.4【答案】B【解析】由题意可得:2,4AB,AB中元素的个数为2,所以选B.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.4.【2017天津,文1】设集合{1,2,6},{2,4},{1,2,3,4}ABC,则()ABC(A){2}(B){1,2,4}(C){1,2,4,6}(D){1,2,3,4,6}【答案】B【解析】试题分析:由题意可得:1,2,4,6,1,2,4ABABC.本题选择B选项.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2017北京,文1】已知UR,集合{|22}Axxx或,则UAð(A)(2,2)(B)(,2)(2,)(C)[2,2](D)(,2][2,)【答案】C【解析】【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.6.【2017浙江,1】已知}11|{xxP,}20{xQ,则QPA.)2,1(B.)1,0(C.)0,1(D.)2,1(【答案】A【解析】试题分析:利用数轴,取QP,所有元素,得QP)2,1(.【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.7.【2017天津,文2】设xR,则“20x”是“|1|1x”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】B【解析】试题分析:20x,则2x,11x,则111,02xx,022xxxx,据此可知:“20x”是“11x”的的必要的必要不充分条件,本题选择B选项.【考点】充分必要条件【名师点睛】判断充分必要条件的的方法:1.根据定义,若,pqqp,那么p是q的充分不必要条件,同时q是p的必要不充分条件,若pq,那互为充要条件,若pq,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若:,:pxAqxB,若AB,那么p是q的充分必要条件,同时q是p的必要不充分条件,若AB,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将p是q条件的判断,转化为q是p条件的判断.8.【2017山东,文1】设集合11Mxx,2Nxx,则MNA.1,1B.1,2C.0,2D.1,2【答案】C【解析】【考点】不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.9.【2017山东,文5】已知命题p:,xR210xx;命题q:若22ab,则ab.下列命题为真命题的是A.pqB.pqC.pqD.pq【答案】B【解析】试题分析:由0x时210xx成立知p是真命题,由221(2),12可知q是假命题,所以pq是真命题,故选B.【考点】命题真假的判断【名师点睛】判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.10【2017课标1,文8】函数sin21cosxyx的部分图像大致为A.B.C.D.【答案】C【解析】【考点】函数图象【名师点睛】函数图像问题首先关注定义域,从图象的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择支,从图象的最高点、最低点,分析函数的最值、极值利用特值检验,较难的需要研究单调性、极值等,从图象的走向趋势,分析函数的单调性、周期性等确定图象.11.【2017课标3,文7】函数2sin1xyxx的部分图像大致为()ABD.CD【答案】D【考点】函数图像【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f“”,即将函数值的大小转化自变量大小关系12.【2017浙江,5】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M–mA.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【答案】B【解析】试题分析:因为最值在2(0),(1)1,()24aafbfabfb中取,所以最值之差一定与b无关,选B.【考点】二次函数的最值【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上,且对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.13.【2017北京,文5】已知函数1()3()3xxfx,则()fx(A)是偶函数,且在R上是增函数(B)是奇函数,且在R上是增函数(C)是偶函数,且在R上是减函数(D)是奇函数,且在R上是增函数【答案】B]【解析】【考点】函数的性质【名师点睛】本题属于基础题型,根据奇偶性的定义fx与fx的关系就可以判断函数的奇偶性,判断函数单调性的方法,1.平时学习过的基本初等函数的单调性;2.函数图象判断函数的单调性;3.函数的四则运算判断,增函数+增函数=增函数,增函数-减函数=增函数,判断函数的单调性;4.导数判断函数的单调性.14.【2017北京,文8】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)(A)1033(B)1053(C)1073(D)1093【答案】D【解析】试题分析:设36180310MxN,两边取对数,36136180803lglglg3lg10361lg38093.2810x,所以93.2810x,即MN最接近9310,故选D.【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是36180310x时,两边取对数,对数运算公式包含logloglogaaaMNMN,logloglogaaaMMNN,loglognaaMnM.15.【2017山东,文9】设,0121,1xxfxxx,若1fafa,则1faA.2B.4C.6D.8【答案】C【解析】【考点】分段函数求值【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.16.【2017天津,文6】已知奇函数()fx在R上是增函数.若0.8221(log),(log4.1),(2)5afbfcf,则,,abc的大小关系为(A)abc(B)bac(C)cba(D)cab【答案】C【解析】试题分析:由题意:221loglog55aff,且:0.822log5log4.12,122,据此:0.822log5log4.12,结合函数的单调性有:0.822log5log4.12fff,即,abccba,本题选择C选项.【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,2log5af,再比较0.822log5,log4.1,2比较大小]17.【2017课标II,文8】函数2()ln(28)fxxx的单调递增区间是A.(,2)B.(,1)C.(1,)D.(4,)【答案】D【解析】函数有意义,则:2280xx,解得:2x或4x,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为4,.故选D.【考点】复合函数单调区间【名师点睛】求函数单调区间的常用方法:(1)定义法和导数法,通过解相应不等式得单调区间;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用函数单调性的基本性质,尤其是复合函数“同增异减”的原则,此时需先确定函数的单调性.[来源:Z_xx_k.Com]18.【2017课标1,文9】已知函数()lnln(2)fxxx,则A.()fx在(0,2)单调递增B.()fx在(0,2)单调递减C.y=()fx的图像关于直线x=1对称D.y=()fx的图像关于点(1,0)对称【答案】C【解析】【考点】函数性质【名师点睛】如果函数()fx,xD,满足xD,恒有()()faxfbx,那么函数的图象有对称轴2abx;如果函数()fx,xD,满足xD,恒有()()faxfbx,那么函数()fx的图象有对称中心(,0)2ab.19.【2017山东,文10】若函数exfx(e=2.71828,是自然对数的底数)在fx的定义域上单调递增,则称函数fx具有M性质,下列函数中具有M性质的是A.2xfxB.2fxxC.3xfxD.cosfxx【答案】A【解析】由A,令()

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功