高一数学组三部函数y=Asin(x+)的图象2oxy---11--13232656734233561126sin[0,2]yxx在函数的图象上,起关键作用的点有:sin,[0,2]yxx最高点:最低点:与x轴的交点:(0,0)(,0)(2,0))1,(23)1,2(知识回顾:02322xxsin2xsin21xsin10001002210002210例1作函数及的图象。xysin21xysin2解:1.列表新课讲解:y=2sinxy=sinxy=sinx12xyO212212.描点、作图:周期相同xyO212A1y=2sinx一、函数y=Asinx(A0)的图象y=sinx12周期不变,振幅变化函数y=Asinx(A0且A≠1)的图象可以看作是把y=sinx的图象上所有点的纵坐标伸长(当A1时)或缩短(当0A1时)到原来的A倍(横坐标不变)而得到的。y=Asinx,x∈R的值域为[-A,A],最大值为A,最小值为-A.1.列表:4243010001例2作函数及的图象。xy21sinxy2sinxx2sinx223220x2sin12xx432032202010-10xyO21134y=sinx12y=sin2xy=sinx2.描点作图:xyO21134y=sinx的图象可以看作是把y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)。y=sin2x的图象可以看作是把y=sinx的图象上所有点的横坐标缩短到原来的倍(纵坐标不变)。2121二、函数y=sinx(0)的图象y=sin2xy=sinxy=sinx12函数y=sinx(0且≠1)的图象可以看作是把y=sinx的图象上所有点的横坐标缩短(当1时)或伸长(当01时)到原来的倍(纵坐标不变)而得到的。1例3作函数及的图象。)4sin(xy)3sin(xy230226561133734x3x)3sin(x010-10yxO21134sin()3yx)4sin(xyyxO21134sin()3yx)4sin(xy三、函数y=sin(x+φ)图象函数y=sin(x+φ)的图象可以看作是把y=sinx的图象上所有的点向左(当φ0时)或向右(当φ0时)平移|φ|个单位而得到的。例4作函数及的图象。)42sin(xy)32sin(xy23022125121166732x32x)32sin(x010-10yxO1126sin(2)3yxy=sin2x例4作函数及的图象。)42sin(xy)32sin(xy23022x010-10yxO1126y=sin2x)42sin(xy24xsin(2)4x78583888四、函数y=sinωx与y=sin(ωx+φ)图象的关系yxO1126sin(2)3yxy=sin2x)42sin(xy8函数y=sin(x+)(0且≠1)的图象可以看作是把y=sinx的图象向左(当0时)或向右(当﹤0时)平移个单位而得到的。||提示:由于我们研究的函数仅限于0的情况,所以只需要判断的正负即可判断平移方向?)631sin(2sin:的图象的图象得到怎样由思考xyxyxysin函数的图象)6sin(xy的图象)631sin(xy的图象)631sin(2xy6)1(向右平移倍横坐标伸长到原来的3)2(纵坐标不变倍纵坐标伸长到原来的2)3(横坐标不变1-12-2xoy3-322627213y=sinxy=sin(x-)①6)631sin(xy②)631sin(2xy③sinyxsin()yAxsin()yxsin()yxsinyx向左或向右平移个单位||纵坐标不变,横坐标变为原来的倍1纵坐标不变,横坐标变为原来的倍向左或向右平移个单位||横坐标不变,纵坐标变为原来的A倍1总结:课后作业:课本P49练习A,T1(4)T2(4),T3,T4;P50练习B.世上没有什么天才天才是勤奋的结果