辽宁省营口市2016届九年级上期末数学试卷含答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

辽宁省营口市2016届九年级上学期期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=63.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是()A.B.C.D.4.如图,⊙O是△ABC的内切圆,切点分别是D、E、F.已知∠A=100°,∠C=40°,则∠DFE的度数是()A.55°B.60°C.65°D.70°5.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)6.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121B.100(1﹣x)=121C.100(1+x)2=121D.100(1﹣x)2=1217.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.28.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF的面积比是()A.1:6B.1:5C.1:4D.1:29.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.10.如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.方程(3x+1)=x2+2化为一般形式为.12.在反比例函数的图象的每一条曲线上,y随着x的增大而增大,则k的取值范围是.13.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.14.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.15.如图,在平面直角坐标系中,点A(,1)关于x轴的对称点为点A1,将OA绕原点O逆时针方向旋转90°到OA2,用扇形OA1A2围成一个圆锥,则该圆锥的底面圆的半径为.16.体育测试时,初三一名学生推铅球,已知铅球所经过的路线为抛物线y=﹣x2+x+12的一部分,该同学的成绩是.17.观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是.18.如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为.三、解答题(共6小题,满分66分)19.解方程:(1)x2﹣6x﹣6=02x2﹣7x+6=0.20.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标(4,2),过点D(0,3)和E(6,0)的直线分别于AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;若反比例函数y=(x>0)的图象经过点M,求该反比函数的解析式,并通过计算判断点N是否在该函数的图象上.21.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;某顾客参加一次抽奖,能获得返还现金的概率是多少?22.如图,已知直线AB与x轴、y轴分别交于点A和点B,OA=4,且OA,OB长是关于x的方程x2﹣mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM,交x轴于点N,点D为OA的中点.(1)求证:CD是⊙M的切线;求线段ON的长.23.一批单价为20元的商品,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?24.如图,抛物线与直线交于A、B两点,点A在x轴上,点B的横坐标是2.点P在直线AB上方的抛物线上,过点P分别作PC∥y轴、PD∥x轴,与直线AB交于点C、D,以PC、PD为边作矩形PCQD,设点Q的坐标为(m,n).(1)点A的坐标是,点B的坐标是;求这条抛物线所对应的函数关系式;(3)求m与n之间的函数关系式(不要求写出自变量n的取值范围);(4)请直接写出矩形PCQD的周长最大时n的值.辽宁省营口市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【考点】解一元二次方程-配方法.【专题】配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是()A.B.C.D.【考点】概率公式.【分析】由六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,直接利用概率公式求解即可求得答案.【解答】解:∵六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,∴抽到的座位号是偶数的概率是:=.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.如图,⊙O是△ABC的内切圆,切点分别是D、E、F.已知∠A=100°,∠C=40°,则∠DFE的度数是()A.55°B.60°C.65°D.70°【考点】三角形的内切圆与内心.【分析】根据三角形的内角和定理求得∠B=40°,再根据切线的性质以及四边形的内角和定理得出∠DOE=140°,再根据圆周角定理即可得出∠DFE=70°.【解答】解:∵∠A=100°,∠C=40°,∴∠B=180°﹣∠A﹣∠C=40°,∵⊙O是△ABC的内切圆,切点分别是D、E、F,∴∠BDO=∠BEO=90°,∴∠DOE=180°﹣∠B=140°,∴∠DFE=∠DOE=70°.故选:D.【点评】本题考查了三角形的内切圆、切线的性质、圆周角定理、四边形内角和定理;熟练掌握切线的性质,求出∠DOE是解决问题的关键.5.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)【考点】二次函数的性质.【专题】压轴题.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.6.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121B.100(1﹣x)=121C.100(1+x)2=121D.100(1﹣x)2=121【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为121元,列出关于x的方程.【解答】解:设平均每次提价的百分率为x,根据题意得:100(1+x)2=121,故选C.【点评】此题考查了一元二次方程的应用,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.7.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.2【考点】垂径定理;全等三角形的判定与性质.【分析】根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.【解答】解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选C.【点评】本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ADO≌△OFE和求出AD的长,注意:垂直于弦的直径平分这条弦.8.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF的面积比是()A.1:6B.1:5C.1:4D.1:2【考点】位似变换.【分析】由△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,根据位似图形的性质,即可得AC∥DF,即可求得AC:DF=OA:OD=1:2,然后根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.【解答】解:∵△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,∴AC∥DF,∴△OAC∽△ODF,∴AC:DF=OA:OD=1:2,∴△ABC与△DEF的面积比是1:4.故选C.【点评】此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.9.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】代数综合题.【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功