山东省临沭县2014-2015学年高一上学期月考数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

山东省临沭县2014-2015学年高一上学期月考数学试卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设集合U={0,1,2,3,4},M={1,2,4},N={2,3},则(∁UM)∪N=()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3}2.(5分)下列关系中,正确的个数为()①②③0∈N*④{﹣5}⊆Z.A.1B.2C.3D.43.(5分)函数的定义域是:()A.7.(5分)已知0<a<1,logam<logan<0,则()A.1<n<mB.1<m<nC.m<n<1D.n<m<18.(5分)已知函数f(x)=,若f(a)=4,则实数a=()A.﹣2或6B.﹣2或C.﹣2或2D.2或9.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内10.(5分)已知f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),则f(﹣log35)的值为()A.4B.﹣4C.6D.﹣6二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..11.(5分)设集合A={﹣1,1,3},B={a+2,a2+4},A∩B={3},则实数a=.12.(5分)已知幂函数f(x)=xa的图象经过点,则f(9)=.13.(5分)计算:3﹣27﹣lg0.01+lne3=.14.(5分)某方程有一无理根在区间D=(1,3)内,若用二分法求此根的近似值,则将D至少等分次后,所得近似值可精确到0.1.15.(5分)下列叙述正确的序号是①对于定义在R上的函数f(x),若f(﹣3)=f(3),则函数f(x)不是奇函数;②定义在R上的函数f(x),在区间(﹣∞,0]上是单调增函数,在区间(0,+∞)上也是单调增函数,则函数f(x)在R上是单调增函数;③已知函数的解析式为y=x2,它的值域为{4,9},那么这样的函数有9个;④对于任意的x1,x2∈(0,+∞),若函数f(x)=log2x,则≤.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)(1)已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁UB)={1,3,5,7},试求集合B.(2)已知lg2=a,lg3=b,试用a,b表示log125.17.(12分)在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg),火箭(除燃料外)的质量m(单位:kg)满足ev=(1+)2000.(e为自然对数的底)(Ⅰ)当燃料质量M为火箭(除燃料外)质量m两倍时,求火箭的最大速度(单位:m/s);(Ⅱ)当燃料质量M为火箭(除燃料外)质量m多少倍时,火箭的最大速度可以达到8km/s.(结果精确到个位,数据:e≈2.718,e4≈54.598,ln3≈1.099))18.(12分)已知函数f(x)=ax﹣1﹣1(a>0且a≠1)(1)若函数y=f(x)的图象恒过定点P,求点P的坐标;(2)若f(lga)=99,求a的值.19.(12分)设全集为U=R,集合A=(﹣∞,﹣3]∪时,记f(x),g(x)的值域分别为集合A,B,若A∪B=A,求实数k的取值范围.21.(14分)定义在上的奇函数f(x),当﹣1≤x<0时,f(x)=(1)求f(x)在上解析式;(2)判断f(x)在(0,1)上的单调性,并给予证明.山东省临沭县2014-2015学年高一上学期月考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设集合U={0,1,2,3,4},M={1,2,4},N={2,3},则(∁UM)∪N=()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3}考点:交、并、补集的混合运算.专题:计算题.分析:由集合U={0,1,2,3,4},M={1,2,4},知CUM={0,3},再由N={2,3},能求出(CUM)∪N.解答:解:∵集合U={0,1,2,3,4},M={1,2,4},∴CUM={0,3},∵N={2,3},∴(CUM)∪N={0,2,3}.故选D.点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.2.(5分)下列关系中,正确的个数为()①②③0∈N*④{﹣5}⊆Z.A.1B.2C.3D.4考点:集合的包含关系判断及应用;元素与集合关系的判断.专题:计算题.分析:根据元素与集合的关系,集合间的包含关系,进行判断.解答:解:①正确,②不正确,③0∈N*不正确,④{﹣5}⊆Z正确.故选B.点评:本题主要考查元素与集合的关系,集合间的包含关系,属于基础题.3.(5分)函数的定义域是:()A.7.(5分)已知0<a<1,logam<logan<0,则()A.1<n<mB.1<m<nC.m<n<1D.n<m<1考点:对数函数的单调性与特殊点.分析:本题考查对数函数的性质,基础题.解答:解:由logam<logan<0=loga1得m>n>1,故选A.点评:本题主要考查对数比较大小的问题,要注意对数函数的单调性,即当底数大于1时单调递增,当底数大于0小于1时单调递减.8.(5分)已知函数f(x)=,若f(a)=4,则实数a=()A.﹣2或6B.﹣2或C.﹣2或2D.2或考点:分段函数的应用.专题:计算题;函数的性质及应用.分析:由分段函数及f(a)=4,得到或,解出a即可.解答:解:∵函数f(x)=,f(a)=4,∴或,即或,∴a=﹣2或6.故选:A.点评:本题考查分段函数及运用,考查分段函数值时必须注意各段的自变量的取值范围,同时考查指数方程和对数方程的解法,属于基础题.9.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内考点:函数零点的判定定理.专题:函数的性质及应用.分析:由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.解答:解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f(c)=(c﹣a)(c﹣b)>0,由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.故选A.点评:熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.10.(5分)已知f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),则f(﹣log35)的值为()A.4B.﹣4C.6D.﹣6考点:函数奇偶性的性质.专题:计算题;规律型;方程思想;转化思想.分析:由题设条件可先由函数在R上是奇函数求出参数m的值,求函数函数的解板式,再由奇函数的性质得到f(﹣log35)=﹣f(log35)代入解析式即可求得所求的函数值,选出正确选项解答:解:由题意,f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),∴f(0)=30+m=0,解得m=﹣1,故有x≥0时f(x)=3x﹣1∴f(﹣log35)=﹣f(log35)=﹣()=﹣4故选B点评:本题考查函数奇偶性质,解题的关键是利用f(0)=0求出参数m的值,再利用性质转化求值,本题考查了转化的思想,方程的思想.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..11.(5分)设集合A={﹣1,1,3},B={a+2,a2+4},A∩B={3},则实数a=1.考点:交集及其运算.专题:集合.分析:根据交集的概念,知道元素3在集合B中,进而求a即可.解答:解:∵A∩B={3}∴3∈B,又∵a2+4≠3∴a+2=3即a=1故答案为1点评:本题属于以集合的交集为载体,考查集合的运算推理,求集合中元素的基础题,也是2015届高考常会考的题型.12.(5分)已知幂函数f(x)=xa的图象经过点,则f(9)=.考点:幂函数的概念、解析式、定义域、值域.专题:计算题.分析:将点的坐标代入解析式,求出a,再令x=9,求f(9)即可.解答:解:由题意f(3)=,所以a=﹣,所以f(x)=,所以f(9)=故答案为:.点评:本题考查求幂函数的解析式、对幂函数求值,属基本运算的考查.13.(5分)计算:3﹣27﹣lg0.01+lne3=0.考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.分析:利用对数和分数指数幂的运算法则求解.解答:解:=4﹣9+2+3=0.故答案为:0.点评:本题考查对数式的化简求值,是基础题,解题时要注意运算法则的合理运用.14.(5分)某方程有一无理根在区间D=(1,3)内,若用二分法求此根的近似值,则将D至少等分5次后,所得近似值可精确到0.1.考点:二分法的定义.专题:计算题;函数的性质及应用.分析:每次用二分法,区间宽度减半,初始区间宽度是2,则可得第n次二等分后区间长,利用精确度,建立不等式,即可求得结论.解答:解:每次用二分法,区间宽度减半,初始区间宽度是2,则第n次二等分后区间长为2×要使所得近似值的精确度达到0.1,则2×<0.1,∴n≥5所以应将区间(1,3)分5次后得的近似值可精确到0.1故答案为:5.点评:本题考查二分法求方程的根时确定精度的问题,考查学生的计算能力,属于基础题.15.(5分)下列叙述正确的序号是③④①对于定义在R上的函数f(x),若f(﹣3)=f(3),则函数f(x)不是奇函数;②定义在R上的函数f(x),在区间(﹣∞,0]上是单调增函数,在区间(0,+∞)上也是单调增函数,则函数f(x)在R上是单调增函数;③已知函数的解析式为y=x2,它的值域为{4,9},那么这样的函数有9个;④对于任意的x1,x2∈(0,+∞),若函数f(x)=log2x,则≤.考点:命题的真假判断与应用.专题:函数的性质及应用.分析:分析:(1)根据奇函数的性质加以判断;(2)不一定,可借助于数形结合加以判断;(3)根据函数的三要素,只需确定其定义域的取值即可;(4)这是考查函数凹凸性,也可以借助与图象判断.解答:解:①由奇函数的定义可知,常数函数y=0,x∈R是奇函数,且满足f(﹣3)=f(3),所以①不对;②如图是函数f(x)的图象,其满足在区间(﹣∞,0]上是单调增函数,在区间(0,+∞)上也是单调增函数,但不满足在R上是增函数,所以②错;③令x2=4和x2=9得x=﹣2或2或﹣3或3.则定义域分别为{2,3}{2,﹣3}{﹣2,3}{﹣2,﹣3}{﹣2,2,3}{﹣2,2,﹣3}{﹣2,3,﹣3}{2,﹣3,3}{﹣2,2,﹣3,3}共9种情况,故③正确;④如图,作出函数y=log2x的图象,从图中可以看出,,并且两点A、B重合时取等号,故④正确.故答案为③④点评:这种类型的为题一般从概念出发来考虑,涉及函数的性质的问题,尤其是选择填空,一般采用数形结合的方法.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)(1)已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁UB)={1,3,5,7},试求集合B.(2)已知lg2=a,lg3=b,试用a,b表示log125.考点:对数的运算性质;交、并、补集的混合运算.专题:函数的性质及应用.分析:(1)由于全集U=A∪B={x∈N|0≤x≤10}={0,1,2,3,4,5,6,7,8,9,10},A∩(∁UB)={1,3

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功