北航传感器实验报告

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1信号与测试技术实验报告实验二传感器实验院系:自动化科学与电气工程学院姓名:学号:班级:2一.活塞压力计静态校准一、实验目的1.掌握压力传感器的原理;2.掌握压力测量系统的组成;3.掌握压力传感器静态校准实验和静态校准数据处理的一般方法。二、实验设备本实验系统由活塞式压力计,硅压阻式压力传感器,信号调理电路,4位半数字电压表,直流稳压电源盒采样电阻组成。图一为实验系统方框图,图二为实验电路接线图。图一实验系统方框图图二实验电路接线图实验设备型号及精度3三、实验原理在实验中,活塞式压力计作为基准器,为压力传感器提供标准压力0~0.6MPa。信号调理器为压力传感器提供恒流电源,并将压力传感器输出的电压信号放大并转换为电流信号。信号调理器输出为二线制,4‐20mA信号在250欧采样电阻上转换为1‐5V电压信号,由4位半数字电压表读出。四、实验步骤1.用调整螺钉和水平仪将活塞压力计调至水平。2.核对砝码重量及个数,注意轻拿轻放。3.将活塞压力计的油杯针阀打开,逆时针转动手轮向手摇泵内抽油,抽满后,将油杯针阀关闭(严谨未打开油杯针阀时,用手轮抽油,以防破坏传感器)。4.加载砝码至满量程,转动手轮使测量杆标记对齐,再卸压。反复1‐2次,以消除压力传感器内部的迟滞。5.卸压后,重复步骤3,并在油杯关闭前记录传感器的零点输出电压,记为正行程零点。6.按0.05MPa的间隔,逐级给传感器加载至满量程,每加载一次,转动手轮使测量杆上的标记对齐,在电压表上读出每次加载的电压值。7.加载至满量程后,用手指轻轻按一下砝码中心点,施加一小扰动,稍后记录该电压值,记为反行程的满量程值。此后逐级卸载,每卸载一次需要用手轮保证测量杆上的标记对齐,然后从电压表上读出相应的电压值。8.卸载完毕,将油杯针阀打开,记录反行程零点,一次循环测量结束。9.稍停1‐2分钟,开始第二次循环,从步骤(5)开始操作,共进行3次循环。五、实验数据处理1.各部分用方框图标注如实验设备中图一所示。2.实验数据列表压力/MP输出电压/V第一循环第二循环第三循环正行程01.2131.2151.02080.051.3451.3451.3450.11.6811.6801.6810.152.0162.0162.0160.22.3552.3512.3540.252.6862.6862.68640.33.0223.0213.0210.353.3563.3573.3570.43.6913.6923.6910.454.0264.0264.0260.54.3604.3604.360反行程0.54.3604.3604.3600.454.0254.0254.0250.43.6903.6903.6910.353.3553.3553.3550.33.0213.0213.0210.252.6842.6852.6840.22.3502.3502.3500.152.0152.0152.0150.11.6801.6801.6800.051.3451.3451.34501.2131.2151.2143.数据处理(1)校准曲线L(传感器实际特性的数学期望)的确定压力/MP正行程输出uiy反行程输出diy平均输出iy(V)01.0201671.0206671.0204170.051.57451.5739331.5742170.11.8822331.87961.8809170.152.1910332.1862.1885170.22.4956672.4933332.49450.252.8063332.8033332.8048330.33.1173.1093.1130.353.4273.4153333.4211670.43.7373.7283333.7326670.454.0476674.0386674.0431670.54.3566674.3514.353833最小二乘法拟合曲线211112211nnnniiiiiiiiinniiiixyxxyanxx,1112211nnniiiiiiinniiiinxyxybnxx;可得a=1.1851,b=6.3967,即y=1.1851+6.3967x,r2=0.9965,线性度高。5由上述拟合可知,压力与电压之间存在着很好的线性度。但是测量点第一个点误差相对比较大。(2)非线性度Ls:压力/MP平均输出iy(V)最小二乘直线输出iy非线性偏差,iLy01.0204161.1851-0.16468340.051.5742171.5049350.069281670.11.8809171.824770.056146670.152.1885172.1446050.043911670.22.49452.464440.030060.252.8048332.7842750.020558330.33.1133.104110.008890.353.4211673.423945-0.00277830.43.7326673.74378-0.01111330.454.0431674.063615-0.02044830.54.3538334.38345-0.0296167%100|)(|maxFSllyy其中,||max)(,maxLilyy,i=1,2.....niiLiyyy,由表可知,|)(|maxly=0.06928167;minmaxxxbyFS6.3967×0.5=3.19835所以,%8760.1%10019835.306928167.0ly=6.3967x+1.1851R²=0.996500.511.522.533.544.5500.10.20.30.40.50.6平均输出压力线性回归6由上述计算可知,非线性误差较小,输出电压与压力值线性度较好。(3)迟滞误差H压力/MP正行程输出uiy反行程输出diy正反行程偏差,iHy01.0201671.020667-0.00050.051.57451.5739330.0005670.11.8822331.87960.0026330.152.1910332.1860.0050330.22.4956672.4933330.0023330.252.8063332.8033330.0030.33.1173.1090.0080.353.4273.4153330.0116670.43.7373.7283330.0086670.454.0476674.0386670.0090.54.3566674.3510.005667可知%1002)(maxFSHHyy,由表可知,H0.011667/(2×3.19835)×100%=0.18239%可知迟滞误差很小。(4)非线性迟滞LH压力/MP正行程输出uiy反行程输出diy最小二乘直线输出iyiuiyyidiyy非线性迟滞误差,iLHy01.0201671.0206671.18510.164930.164430.164930.051.57451.5739331.5049350.0695650.0689980.0695650.11.8822331.87961.824770.0574630.054830.0574630.152.1910332.1862.1446050.0464280.0413950.0464280.22.4956672.4933332.464440.0312270.0288930.0312270.252.8063332.8033332.7842750.0220580.0190580.0220580.33.1173.1093.104110.012890.004890.012890.353.4273.4153333.4239450.0030550.008610.008610.43.7373.7283333.743780.006780.015450.015450.454.0476674.0386674.0636150.015950.024950.024950.54.3566674.3514.383450.026780.032450.032457可知%100)(maxFSLHLHyy,由表可知,LH0.069565/3.19835×100%=2.175%由上述计算可知,非线性迟滞误差略大。分析原因,有可能是第一个点测量的时候存在着较大的误差。(5)重复性极差法压力/MPuiWuisdiWdis00.00180.0009420.00015.2356E-050.050.00160.0008380.00060.0003141360.100.00030.0001570.0070.0036649210.150.00015.24E-050.0110.0057591620.200.0070.0036650.0140.0073298430.250.0050.0026180.0060.0031413610.30000.0140.0073298430.35000.0070.0036649210.40000.0140.0073298430.450.0010.0005240.0110.0057591620.50.0060.0031410.0040.002094241标准偏差为:;=√1∗0.0003012∗11=3.6989×10-3重复性为:8ξR=Fsy3s×100%=3×3.6989×10−33.19835×100%=0.34695%贝塞尔公式压力/MP正行程标准偏差uiS反行程标准偏差diS01.02333E-063.33333E-090.057.6E-079.33333E-080.102.33333E-081.588E-050.153.33333E-092.7E-050.201.63333E-056.53333E-050.258.33333E-061.03333E-050.302.95823E-315.2E-050.3501.43333E-050.4005.73333E-050.453.33333E-072.03333E-050.51.03333E-050.000192标准偏差为:;=√12×11×.93−08=4.7338×10-59重复性为:ξR=Fsy3s×100%=3×.7338×10−53.19835×100%=0.00444%(6)总精度:直接代数和(重复性由极差法得到)%8760.1+0.18239%+0.34695%=2.40534%方和根(重复性由极差法得到)=√(1.8760%)2+(0.18239%)2+(0.3695%)^2=1.92757%综合考虑非线性迟滞和重复性(重复性由极差法得到)=2.175%+0.34695%=2.52195%综合考虑迟滞和重复性(重复性由极差法得到)=0.18239%+0.34695=0.52934%六、实验感想实验结果基本符合实验要求,活塞压力计精度较高,但迟滞误差略大,第一组数据误差略大。通过此次实验,我了解了压力传感器的原理和压力测量系统的组成,掌握了测试系统静态校准的参数计算方法。10二.电容式传感器实验一、实验目的了解电容式传感器原理及位移测量的原理;二、实验仪器电容传感器实验模块示波器:DS5062CE微机电源:WD990型,±12V万用表:VC9804A型电源连接电缆螺旋测微仪三、实验原理差动式同轴变面积电容的两组电容片Cx1与Cx2作为双T电桥的两臂,当电容量发生变化时,桥路输出电压发生变化.四、实验步骤实验步骤如下:(1)用电源电缆连接电源和电容传感器实验模块(插孔在后侧板),其中电缆的橙蓝线为+12V,白蓝线为-12V,隔离皮(金色)为地,切记勿接错!(2)观察电容传感器结构:传感器由一个动极与两个定级组成,按图1接好实验线路,增益适当。(3)打开微机电源,用测微仪带动传感器动极位移至两组定极中间,调整调零电位器,此时模块电路输出为零。(4)前后位移动极,每次0.5mm,直至动

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功